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Abstract— This paper presents an measure for image similarity
based on local feature descriptions and geometric constraints. We
show that on the basis of this similarity an appearance graph
representation of the environment of a mobile robot can be made.
This graph can be used for representing semantic information
about the space, and can be used for visual navigation. The
image similarity measure is robust for occlusions by people in
the neighbourhood of the robot.

Index Terms— Visual mapbuilding, localization, navigation

I. INTRODUCTION

An internal representation of the environment is needed for
optimal mobile robot navigation. Traditionally such a model
is represented as a geometric model indicating admissible and
non-admissible areas. The robot has to know its location within
such a model and in most of the times has to estimate the
parameters of the models simultaneously (SLAM).

Now cameras and processing power are becoming cheaper,
visual information is used more often in environment mod-
eling. For example, visual features are used to solve the
loop closing problem in geometric SLAM. A step further are
approaches which model the environment only in appearances,
in contrast to explicit geometric representations of space.

In this paper we present our recent work on appearance
modeling of the environment. On the basis of a set of omnidi-
rectional camera images an ’appearance graph’ is constructed.
This graph can be used for navigation and for a categorization.
A prerequisite for making the graph is a good similarity mea-
sure between images. The paper first present a brief overview
on visual perception and space models. Then the work on
appearance modeling in robotics is summarized. Section IV
presents the graph based model. The similarity measure and
the applications of the graph are presented in sections V,VI
and VII. The robustness for visual occlusions is presented in
section VIII.

II. SPATIAL REPRESENTATIONS AND VISUAL INFORMATION

Work on spatial representations has been carried out in vari-
ous fields. From the field of behavioural psychology, the early
studies of Tolman [24] using rats in various mazes, showed
that rats could learn a ’cognitive map’ and reason with that
representation. Also from the field of neuroscience a cognitive
map theory was presented by O’Keefe and Nadel in 1978 [2].
The theory focussed on hippocampal functioning and suggests

Fig. 1. Shepard & Metzlers Mental rotation task. Subjects were shown pairs
of drawings of three-dimensional objects and asked whether the members of
a pair were identical. The task can be solved for physical objects by rotating
one of them until they can be viewed from the same perspective, but in this
case the subjects had to perform the rotation ”mentally”.

that this brain structure is the core of an extensive neural
system subserving the representation and use of information
about the spatial environment. The authors describe that visual
cues play an important role in map learning. An intriguing
debate took place the end of the 1980’s, when Kosslyn [9]
presented his theory on mental imagery. In his research he
studied to which extend images serve as data structures for
human memory. As a part of that work spatial representations
were considered. Experiments carried out earlier by Shephard
(see figure 1) showed that a in order to judge whether two
observations were coming from a same object, the subjects
’mentally rotated’ one of shapes and compared it to the other:
the matching was done in the image domain instead of in the
3D shape domain .

Also in other fields, for example engineering, studies have
been carried out on the representation of space. From the
field of city design, ’cognitive maps’ describe hoe people
perceive and understand the environment [13]. Lynch’s stud-
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ies were based on ’salient’ objects, or buildings which are
(visually) perceived by humans. Also in the field of machine
intelligence ’cognitive maps’ have been introduced. Kuipers
[11] defines a cognitive map as a layered model consisting
of the identification and recognition of landmarks and places
from local sensory information, control knowledge of routes,
a topological model of connectivity and metrical descriptions
of shape, distance, direction, orientation, and local and global
coordinate systems.

In the literature on spatial representations in humans, there
is clearly evidence that visual information might be a basis of
spatial models.

III. APPEARANCE BASED REPRESENTATIONS FOR

ROBOTICS

Traditionally robots use a two-dimensional, geometrically
accurate representation of a three-dimensional space; a ’map-
ping’ from world coordinates to an indicator which tells
whether the position is occupied or not. Sensors to make
such maps are typically range sensors such as sonar or laser
range scanners. Scanning range sensors make it possible to
make 3D geometric representations, sometimes augmented
with appearance information from a camera. More recently
computer vision techniques are presented. Sets of images
(structure from motion) are used to make 3D representations.
Dense methods have been presented [5], as well as 3D recon-
struction from local salient features (’landmarks’) [20],[17].
On-line simultaneous localization and reconstruction of visual
landmark positions was presented in [1] but currently only for
small scale environments.

In addition to the metric mapping it is common to represent
the environment in terms of a topological map: distinct places
are coded as nodes in a graph structure with edges which
encode how to navigate from one node to the other [6].
The nodes and the edges are usually enriched with some
local metric information. Mostly such topological maps are
derived from geometric maps. However, recently also visual
information has been used to characterize nodes [8], [23].

All approaches described above use vision to reconstruct a
3D (or 2D) representation of the environment of the robot.
The question is, whether we can also use models that do not
try to recover a 2D or 3D representation of space?

In machine vision, appearance modeling of objects was
introduced about 10 years ago [14]. Nayar showed that an
object could be modeled as the set of views of all different
poses w.r.t. the camera. In feature space these views form a
low dimensional manifold. An unknown object is classified by
finding the nearest manifold. Class label and pose are recov-
ered simultaneously (see figure 2). For environment modeling
appearance models of space were presented [10]. In these
approaches, the environment is modeled as an ’appearance
map’ that consists of a collection of camera (or other sensor)
readings obtained at known poses (positions and orientations).
These methods have shown to be able to localize a mobile
robot but have the problem that supervised data, consisting of
images and corresponding poses, are needed.

Fig. 2. Appearance modeling of objects. Instead of representing the object
as a 3D shape, the object is models as a set of feature vectors derived from
views at different poses. These views can be modelled as a curve in a low
dimensional feature space. After Murase and Nayar[14].

IV. THE APPEARANCE GRAPH REPRESENTATION

In our current approach on appearance modeling we avoid
the problem of a supervised training set. We collect a set
of camera images and use this image set to construct an
’appearance graph’.

In an appearance graph each vertex or ’node’ represents
a pose (which we do not know) and is characterized by the
camera image taken at that location. An edge between two
nodes is defined if the two images are sufficiently similar. As
we will see in the next section, the similarity checks whether
it is possible to perform 3D reconstruction of the local space
from the two corresponding images. The idea behind this is
that we want to have a similarity measure which states that
similar images are taken at adjacent positions. The appearance
graph contains in a natural way the information about how the
space in an indoor environment is separated by the walls and
other barriers. Images from a convex space, for example a
room, will have many connection between them and just a
few connections to some images that are from another space,
for example a corridor, that is connected with the room via
a narrow passage, for example a door. As the result from
n images we obtain a graph that is described with a set of
n nodes V and a symmetric matrix S called the ’similarity
matrix’. For each pair of nodes i,jε[1, ..., n] the value of the
element Sij from S defines similarity of the nodes.

An example of such graph that we obtained from a real
data set is given in figure 3. An edge is drawn between
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Fig. 3. The appearance graph after the robot was driven manually along a
trajectory starting at A and finishing at A. The nodes indicate locations where
omnidirectional images were taken. In order to plot these locations we used
odometry readings corrected after the loop closing

two nodes if the similarity exceeds some threshold. Note that
in constructing the graph no information about the positions
of the nodes is used. In the figure we used these only for
visualization.

As can be seen from the graph, rooms are characterized
by highly connected parts of the graph. In section VI we
describe how to extract such groups of images automatically
from the graph (V, S). An edge in the graph denotes that
the 3D reconstruction is possible between the images that
correspond to the nodes. This also means that if the robot
is at one node it can determine the relative location of the
other node. Therefore, if there are no obstacles in between, the
robot could navigate from one node to the other (for example
as in [3]). Section VII describes how we use the graph for
navigation. However, in the next section we will first present
the similarity measure.

V. OUR IMAGE SIMILARITY MEASURE

Extensive work on image similarity has been presented in
the field of image database retrieval. Methods developed in this
field are generally based on local features, or visual landmarks.
Popular methods try to find a vocabulary of ’codebook’
vectors which are used for image matching. Also in the field
of robotics these approaches are introduced [15]. Note that
these methods remove all geometric information from the
similarity measure. Our image similarity measure is based on
knowledge that images are taken from a moving camera in
an environment. This is exactly what robotics makes different
from most image retrieval methods.

As mentioned earlier, our image similarity measure denotes
that a 3D reconstruction is possible between the images. The
method for 3D reconstruction is based on local salient features
as landmarks. Currently we use the SIFT feature detector [12].
The SIFT feature detector extracts the scale of the feature
point and describes the local neighborhood of the point by a
128-element rotation and scale invariant vector. This vector
descriptor is robust to some light changes, which makes it

appropriate for our application. The method for computing
the similarity between two images is split in two parts:

1) Are there matching landmarks in the two images, and
2) Do these landmarks fulfill the epipolar constraint?

A. Matching Landmarks

Visual landmarks are used often in robotics for naviga-
tion [20],[17],[16]. It has been shown that it is possible to
reconstruct both the camera poses and the 3D positions of
the landmarks by matching (or tracking) landmarks through
images. On-line simultaneous localization and reconstruction
of landmark positions was presented in [1] but currently only
for small scale environments.

In this paper we consider the general case when we start
with a set of unordered images of the environment. This is
similar to the case described in [18], [19]. First we check
if there are many similar (repetitive) landmarks within each
image separately. Such landmarks could potentially lead to
false matches. We discard those landmarks that have 6 or more
similar instances in the same image.

Then, for a landmark from one image we find the best and
the second best matching landmark from the second image.
The goodness of the match is defined by the Euclidian distance
between the landmark descriptors. If the goodness of the
second best match is less then 0.8 of the best one it means
that the match is very distinctive. According to the experiments
in [12] this typically discards 95% of the false matches and
less then 5% of the good ones. This is repeated for each
pair of images and it is very computationally expensive. Fast
approximate methods were discussed in [12].

B. Geometric Constraints

After finding the possible matches for each pair of images
from our data set as described above, we apply a geometric
constraint. Let there be N matching landmark points be-
tween images m and l. The image positions of the points
in the m-th image in homogenous coordinates are denoted as
{x(1)

m , ...,x(N)
m }. The corresponding points in the l-th image

are {x(1)
l , ...,x(N)

l }. If the i-th point belongs to the static
scene, then, for a projective camera, the positions are related
by:

(x(i)
m )T Ex(i)

l = 0 for all i. (1)

where the matrix E is also known as the ’essential matrix’.
Estimating E is an initial step for 3D reconstruction of the
space from images; here we use it for computing image
similarity.

The approach described above for feature matching may
lead to initial false matches. Standard robust M-estimators can
deal with a certain amount of outliers. The robust algorithm
called RANSAC is usually used [7] if there are more outliers.
It was shown [25] that a combination that performs the best is
when the RANSAC is used first and then the M-estimator.
Instead of following the [7] completely we use only the
distinctive matches as in [12] that discards many false matches.
In our experiments we observed that there were still enough
good matches remaining. We used here the standard 8-point
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Fig. 4. Matching two images. The red boxes indicate the SIFT features
found in the images. The lines connecting two of these features indicate that
they correspond. If the line is blue, this means the corresponding pair agrees
with the epipolar constraint. If it is green, it does not agree with the epipolar
constraint and is thus probably an outlier.

algorithm [7] which requires at least 8 matching points. With
such small number of false matches it is possible to use the
robust M-estimator directly. The whole procedure goes as
follows:

• extract SIFT landmarks from all images
• discard self similar landmarks within each image
• find distinctive matches between pairs of images
• if there are more than 8 matches:
• estimate the fundamental matrix using M estimator and

RANSAC
• if there are still more than 8 matches then there is an

edge in the graph

In [4] we use a ground floor constraint, which means that
an edge can even be defined on the basis of 3 matches. An
example of the matches in a realistic situation is depicted in
figure 4.

VI. CLUSTERING IN THE GRAPH

Using the above presented similarity measure, we are able
to make a graph-like representation of the environment. The
graph can be considered as a low-level topological map, with
the vertices (nodes) indicating omnidirectional images and the
links indicating a similarity between the images. By clustering
in this representation we are able to come to a higher level
topological map, with clusters indicating regions in which the
nodes are very similar.

The graph (V, S) gives this information about the structure
of the environment. Convex spaces contain nodes which are
highly interconnected, and doorways will have nodes with
fewer connections. The graph V can be divided into subsets
by cutting a number of edges. There exist different graph cut
mechanisms. In [26] we present our approach which is a fast
approximate solution to the normalized graph cut method from
[21]. In figure 5 it can be seen that the method results in
meaningful clusters. The nodes inside the rooms get the same
label, and each room gets its own label. The hallway is divided

Fig. 5. The clustering found with the graph cut mechanism reflects the
structure in the building

into four regions, which indicates that the appearance is not
uniform in the hallway.

We use the clustered representation to obtain a semantic
description of space by Human Robot Interaction. In [22] we
describe a situation where the robot is guided around by a
user, while the user occasionally gives a label to a location
(for example: ‘corridor’, ’living room’). The image taken at
that location is labeled with that label. By using our clustering
method, all images (nodes) in a cluster obtain the same label.

VII. NAVIGATION USING THE GRAPH

The appearance graph can also be used for navigation. The
challenge is that the graph does not contain any metrical
information: only appearance information and neigbourhood
relations. In [4] we present our navigation method. It is based
on two steps. First we define a cost function on the appearance
graph, indicating for each node in the graph the distance to
the goal node, and then we use a greedy visual navigation
mechanism to drive to the goal.

A. Cost function

We assume that the goal location is given by a node in the
graph. This can be for example be done by the user giving a
semantic label (’kitchen’) which corresponds to a node. First
Dijkstra’s shortest path algorithm is used to compute the cost
function, which is the distance Di from every node i in the
graph to this goal node. This algorithm requires the links of the
graph to be labeled with a distance measure while we have
a similarity measure. Therefore we define the distance d as
dij = 1

Sij
. The distances of the nodes to goal node are used

during driving as a heuristic to drive in the direction of the
goal node. An example of such a cost function is depicted in
figure 6.

B. Greedy visual navigation

At the start of the trajectory the robot localizes itself in
the appearance based graph by taking a new observation and
comparing it with all the images in the graph following the
same matching procedure as used for constructing the graph
. The node of the graph with the highest similarity is chosen
as the current subgoal node c of the robot. This procedure
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Fig. 6. A cost function is created on the basis of distances to the goal node

is linear in the number of nodes and could thus be time
consuming.

If a subgoal node is determined the robot tries to pick a
new subgoal by comparing the newest observation with all
the neighbors of node c that have a smaller distance Dc to the
goal node. If one of these images matches, it becomes the new
current subgoal c. This procedure is repeated for the neighbors
of the new c, until the node is found that is closest to the goal
node and does still robustly match the new observation (see
figure 7

When a subgoal is determined, the heading is estimated
in order to drive in its direction. This heading will not be
perfectly directed toward the subgoal, partly because of sensor-
noise, but also because the environment could have changed
after the appearance based map was constructed. Therefore a
recency weighted averaging filter is used which to takes into
account previous estimates of φ.

Fig. 7. From the current location the robots heads towards an intermediate
target (green). In parallel the similarity with neigbour nodes closer to the
goal are computed (yellow). If these nodes can be reached from the current
position, the robot will head to a new intermediate target

C. Heading estimation using the epipolar geometry

The navigation method requires that the robot is able to
compute a heading direction on the basis of two images. To
compute this heading direction we use the same mechanism
described in section V. On the basis of the current image 1
and the target image 2 we can again compute the essential
matrix:

(x(i)
1 )T Ex(i)

2 = 0 for all i. (2)

TABLE I

PATH LENGTHS IN METERS WITH PEOPLE BLOCKING THE VIEW

#Persons path lengths
0 14.2
1 15.2
2 18.0
3 19.0
4 23.6

The essential matrix bears the relative rotation R and
translation �t up to an unknown scale between the positions
of the two images as follows:

E = RS, (3)

where S is a skew-symmetric matrix composed of the elements
of �t. The essential matrix can be decomposed into 4 different
solutions of �t and R, and we use standard methods to select
the correct one. The heading φ the robot has to drive when
navigating from the current image to the target image can be
calculated using

φ = atan2(ty, tx). (4)

A movie showing the visual navigation can be obtained from
the authors1.

VIII. EXPERIMENTS ON VISUAL OCCLUSIONS

Many localization methods fail if the environment has
changes due to new furniture of occlusions by surrounding
people. To put more strain on the visual navigation method
we now test the ability to drive while part of the view is
blocked by people walking next to and in front of the robot.
See Figure 8 for an indication of the view the robot has while
4 persons are standing next to it. The persons are walking
very near the robot at more or less 20 cm distance. The path
that had to be traversed is the same as one of the paths in the
previous section. Tests are conducted with respectively 1, 2, 3
and 4 persons.

The robot still managed to reach the goal location in all 4
tests. Nonetheless it was clear that for every person that was
added, the navigation was a bit more difficult. In table I it
is shown that the path length increases if a larger part of the
view is blocked. This is not only caused by small divergences
of the correct path, but also because the robot sometimes took
a longer route around the pillar in the hallway. Surprisingly
the robot never had to use its recovery method. The number of
times that the heading to the subgoal could not be estimated
did increase though. For one and two persons it could still
match 100% of the observations, but this decreased to 90%
for the runs with three person and four persons.

During the test with 4 persons an additional thing happened.
Because no collision avoidance was used and the robot was
sometimes heading for a doorpost or the pillar, we had to stop
it manually and push it back. This happened 3 times.

1Currently the video is available from
http://staff.science.uva.nl/˜krose/movies/
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Fig. 8. Four persons blocking the view of the robot.

IX. CONCLUSIONS

We presented a system for localization, mapping and navi-
gation on the basis of appearance data from an omnidirectional
vision system. The robot is able to find and traverse paths in
the visual domain and can navigate from one state to the other.
Navigation proved to be robust in a dynamic environment with
people walking close to the robot.

The experiments we presented in this paper showed that
the robot can successfully map and navigate in a region of
about 500 m2. We realize that this is relatively small compared
to current work on SLAM methods, in which paths of more
than some kilometers are traveled. On the other hand, the
application domain we work on is a personal robotic assistant
in a domestic environment, where robustness to dynamics in
the environment, light conditions and interactions with people
are far more important.

Currently we are integrating the navigation approach in
a more complete robot system that incorporates people de-
tection, people following and exploration. All these methods
make use of the same omnidirectional vision system.
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