
1

Towards an

Experimental Autonomous Blimp Platform
Axel Rottmann∗ Matthias Sippel‡ Thorsten Zitterell∗ Wolfram Burgard∗ Leonard Reindl‡ Christoph Scholl∗

∗Albert-Ludwigs-University ‡Albert-Ludwigs-University

Department of Computer Science Department of Microsystem Technology

Freiburg, Germany Freiburg, Germany

{rottmann, tzittere, burgard, scholl}@informatik.uni-freiburg.de {sippel, reindl}@imtek.uni-freiburg.de

Abstract— In this paper, we present the design of an au-
tonomous indoor blimp. We describe the individual low-weight
components of an embedded system including actors and sensors
which achieve a total weight of less than 200 grams. Both, the
modular hardware components and the use of generic hardware
interfaces facilitate the adaption to different actor and sensor
systems. Similar to the flexibility of the hardware components,
the user benefits from a generic software framework. Here, an on-
board Linux operating system and device driver interface ease
the implementation of robotic applications and control tasks.
The main challenge of designing a small blimp in regard to
autonomous operation is the efficient interplay of the individual
software and hardware components. In this work, we show

approaches of how to build up such a system which can easily be
applied to other robotic systems with constraints in weight and
available space. We evaluate the performance of the components
and demonstrate their integration in a reinforcement learning
setting.

Index Terms— reinforcement learning and navigation

I. INTRODUCTION

The development of small size autonomous flying vehicles

represents one of the current frontiers of research in mobile

robotics. In this context, aerial blimps have the advantage

that they operate at low speed, do not spend energy to keep

their position, and are not overly sensitive to control errors

compared to other flying vehicles. On the other hand, they

are sensible to outside influences like air flow and are subject

to a three dimensional motion model with translations and

rotations. Therefore, they are a common platform to evaluate

robotic algorithms for autonomous flight and navigation.

In this paper, we describe how such a blimp system includ-

ing an embedded microsystem and software framework can be

build up. In this regard, we aim to keep the system as small

and agile as possible in order to operate indoors.

This size constraint also limits the possible weight of the

blimp. With a maximum possible payload of 200 grams in

our configuration the system must include the gondola, actors,

sensors, engine control unit, system unit, and battery. Due

to these characteristics, blimps are not only interesting for

robotics but also for microsystem technology as the attached

devices should be both small and efficient. Such performance

aspects are evaluated in the experiments.

In order to demonstrate the operational reliability of our

blimp system (see Figure 1) we describe a reinforcement

Fig. 1. This images shows the completely build blimp with a length of 1.8 m
and a diameter of 0.8 m.

learning approach to control the altitude. Here, the blimp au-

tonomously learns the optimal policy from scratch to stabilize

its height after it has been switched on.

This paper is organized as follows. After discussing related

work in the following section, we will describe in detail

our blimp system including the hardware components and

the software framework in Section III. Afterwards, we will

illustrate a controlling approach based on reinforcement learn-

ing in Section IV. In Section V, we will present our first

experiences with our blimp system and a practical application

which integrates the components in a reinforcement learning

setting. Finally, Section VI concludes the paper.

II. RELATED WORK

The scientific research on autonomous blimps has constantly

been increasing over the last few years. Most of these blimps

are large-scale systems with a payload of several kilograms.

Hygounenc et al. [4] provided a good overview of how to

construct such an outdoor blimp and how to apply it to some

fundamental robotic tasks. They illustrated how to control

several flight phases from takeoff to landing based on the

non-linear system dynamics. Jung and Lacroix [5] presented

an approach to simultaneous localization and mapping using

low altitude stereo-vision. Also Kim et al. [6] illustrated an

approach to point to point navigation of an outdoor blimp.

Compared to these papers, the blimp described in this paper

has been designed for indoor scenarios. It is much smaller

than the outdoor systems and has a total weight including

the envelope of only 420 grams. Therefore, the challenge is

to integrate low-weight sensors in an embedded microsystem

2

Fig. 2. This image shows the gondola with two rotors for pitch and thrust
control. They can be rotated by 180 degrees.

and to provide a software framework for complex tasks like

autonomous navigation and localization.

Furthermore, blimps have been studied in various contexts.

Varella Gomes and Ramos [14] described the physical prin-

ciples of airship operations often used to design a controller.

Zhang and Ostrowski [16], for instance, used a vision-guided

blimp in combination with a PID controller. Rao et al. [9]

proposed a fuzzy logic controller which was based on the

dynamics of the vehicle. Whereas Wyeth and Barron [15]

presented a low-level reactive controller, Fukao et al. [2]

illustrated an image-based tracking control for an indoor

blimp. Moreover, reinforcement learning has successfully been

applied to learn the control policy of an indoor blimp. Ko et

al. [7] used Gaussian Processes to estimate the residuals of

the dynamics and learn to control the yaw and the yaw rate.

Other applications such as indoor navigation with one camera

were presented by Green et al. [3] and a surveillance system

by Kukao et al. [1].

III. BLIMP SYSTEM

The characteristics of an aerial robot result in various

restrictions considering the assembled hardware. For a blimp

system, the higher the volume of the envelope and therefore the

ascending force, the higher the possible payload. However, a

bigger envelope makes it less applicable for indoor navigation

and results in more inertial flight characteristics. For our

blimp system, the goal was to minimize both the size of the

blimp and consequently the weight of the needed hardware

equipment. The challenges under such constraints are to find

a trade-off between agility, range, and energy consumption,

and to develop appropriate algorithms for small aerial robots

which are highly sensitive to outside influences (e.g., air flow).

In addition, high flexibility and maintainability of the soft-

ware components have been a matter of particular interest

for us. The embedded system has to be powerful enough to

process on-board calculations for autonomous flights while

also allowing to transparently perform these computations

on external computers. Basically, the same piece of control

software must be executable on-board and also on an external

development system without code modifications.

A commercial 1.8 m blimp envelope [8] builds the basis

for our blimp as depicted in Figure 1. The blimp is equipped

with three motors. One motor is mounted in the tail fin to

control the yaw. The other two are mounted on each side of

the gondola to control the pitch and thrust. The latter two are

attached to a shaft which can be rotated up to 180 degree

by a servo (see Figure 2). The gondola includes all hardware

components used to control the speed of the motors using

TABLE I

WEIGHTS OF THE INDIVIDUAL COMPONENTS.

Component Weight [g]

Envelope 230
Gondola 15

Fins, Propellers, & Cables 75
Gumstix 8

Gumstix Peripheral Interface Card 21
Blimp Engine Control Board 7

Inertial Measurement Unit 10
USB hub & WLAN 16

Battery 33

Sum 415

PWMs, to change the position of the servo, and to process

the sensor data. The weights of all components are listed in

Table I.

A. Hardware Equipment

One of the main aspects in the design phase of our system

was to keep the flexibility of the individual system components

to a maximum. Therefore, we separated the system into several

main parts, such as: the system core unit, the peripheral

interface card, and the motor control and sensor board. To

obtain this flexibility all parts can be exchanged and adapted to

other systems and tasks. For instance, we also plan to use this

hardware on other flying robots like a small-scaled helicopter.

The main components are shown in Figure 3 and described in

the following sections.

1) System Core Unit and Communication: The core unit

of the blimp is an Intel XScale PXA270 based system-on-a-

chip (SoC), or more precisely a Gumstix verdex XL6P board

with 600 MHz and 128 MB RAM. An on-board 32 MB flash

memory serves as storage for the Linux operating system.

The SoC provides various low-level communication buses

and protocols (e.g., I2C, four independent UARTs, SPI) as

well as General Purpose Inputs/Outputs (GPIOs) and a USB

host port to access peripheral devices (e.g. WLAN stick).

The Gumstix board provides these circuit points over separate

connectors (Figure 3). The 60-pin connector is used to plug a

self-assembled peripheral interface card described in the next

section.

2) Gumstix Peripheral Interface Card (GPIC): The Gum-

stix Peripheral Interface Card (GPIC) was designed for an easy

exchange of the motor control and sensors. This provides the

opportunity to use our hardware system to several other robots.

The GPIC forms the interface between the system core unit

and the actors and sensors. Referring to this point of view the

GPIC needs various connectors to handle different external

modules. Therefore, the GPIC provides:

• 8 ports for generic devices communicating via UART or

SPI,

• 4 connectors for I2C devices,

• charge control and power supply for the complete system,

• sensor to monitor battery state and power consumption,

• 2 additional UARTs for further purposes, and

• one USB connector for Gumstix’ system maintenance and

a second one to attach common USB devices.

In order to apply our system on different robots eight ports

for generic devices are provided. These ports communicate

3

Fig. 3. The main components of the hardware top down: Gumstix board,
Gumstix Peripheral Interface Card (GPIC), and right at the bottom from left to
right the Blimp Engine Control Board (BECB) and the Inertial Measurement
Unit (IMU). The GPIC is attached via the 60-pin connector to the Gumstix
board.

via UART or SPI and hence can be used for miscellaneous

applications. In our system, we attached a motor control board

and an inertial measurement unit. In general, this provides the

opportunity to easily extend the system with sensors or actors

or transfer it to other robots.

Our system is powered by one 3.7 V lithium polymer

battery. The power supply unit for the complete system is

placed on the GPIC and provides multiple voltages (3.3 V,

5 V, and 6 V). A power management unit offers several advan-

tages. First, it prevents total discharge of the battery (battery

management) and provides different stabilized voltages for

other modules (power supply unit). Second, the system can be

extended by additional boards and sensors without taking the

power requirements into account. Finally, the electric current,

the current over time, and the actual battery voltages are

monitored. A systematic layout of the GPIC including the

various connections and ports is shown in Figure 4. In our

current system, we use a 3.7 V/1500 mAh battery which offers

an operating time-span of 50 minutes with an engine utilization

of 80%.

3) Blimp Engine Control Board (BECB): To have a wide

range of use we also constructed an external Blimp Engine

Control Board (BECB). In case the GPIC should be applied to

other robots it can easily be replaced with a new actor-specific

control board attached to one port for the generic devices. The

core unit of the BECB is a microcontroller which handles

simple string commands from the system unit and controls

the percental power of the motors and the setting of the servo.

Considering the engines, their power depends on the supply

voltage. As the supply voltage decreases during operation,

the thrust of the motors would vary for identical high-level

command. Therefore, we determine a power correction factor

based on the current battery voltage and the characteristics

of the motor to guarantee a constant thrust of the engine.

Consequently, the user can expect the same physical effects

of an action independent of the system state.

4) Inertial Measurement Unit (IMU): A fundamental re-

quirement for autonomous navigation of robots is the ability to

GPIC
Power

Data

Shutdown

Battery state

Various buses

Battery

4 I²C

Connectors

2 Additional

UARTs

8 Generic

Ports

Power Supply

Unit

Gumstix

2 USB

Connectors

Battery

Management

Fig. 4. The Gumstix Peripheral Interface Card (GPIC) consists of a power
supply and battery management unit. Several ports are provided to attach
actors and sensors.

localize itself. In the case of flying robots, information about

its flight attitudes, namely the Tait-Bryan angles roll, pitch,

and yaw, are required. These flight attitudes can be obtained

by an inertial measurement unit (IMU). In addition, we use the

data of the IMU as input for predictive filters to estimate the

current position based on the prior position and to increase the

accuracy of the absolute position measurement. In this regard,

GPS-based localization is not applicable as our blimp system

is targeted on indoor environments.

Our self-made IMU is a highly integrated, planar, strapdown

system based on sensors in MEMS technology. To achieve our

complete state space with adequate accuracy we measured the

following physical units: acceleration, angular rate, magnetic

field, and pressure. The acceleration is measured in three

axis with four different selectable sensitivities. With these

sensitivities one can determine the static sensor offset at zero

gravitation to perform an auto-calibration. The pressure sensor

is used to obtain changes in the altitude.

5) Additional Sensors: In addition to the sensors of the

IMU we equipped our system with an ultrasonic sensor and a

miniature USB camera. Both are downward-facing mounted at

the bottom of the gondola to measure the altitude of the blimp

and to prepare the application for a visual navigation system.

The sonar sensor module SRF10 is attached to the I2C bus

and has a weight of 8 grams. The measurements are integrated

by means of a Kalman filter which sequentially estimates the

altitude and the vertical velocity of the blimp. The attached

USB camera has a weight of 9 grams and provides JPEG

pictures with a resolution of up to 640 × 480 pixels.

B. Software Architecture

This section considers the software environment of our

blimp system. Similar to the hardware framework, our aim was

to apply standard software which provides easy maintainabil-

ity, configuration, and flexibility with regard to the operating

system, hardware access, and communication. Figure 5 shows

the interplay of the software framework, i.e., of the operating

system, drivers, and interprocess communication.

1) Operating system: Despite its small dimensions the

Gumstix board runs a full-fledged Linux operating system

which provides interfaces to access the connected hardware

and eases the configuration of the blimp as a wireless client

4

Intel XScale PXA270

Operating system

Hardware Interface Library Networking

Device Access

IPC Client

Central IPC Server

Blimp Control

IPC Client

Gumstix Peripheral Interface Card (GPIC)

SensorsActors

WLAN card

external

IPC ClientsIMU

Fig. 5. The Figure shows the individual core components of the blimp
system. The operating system including the interface library provides higher-
level access for the IPC framework and application processes.

and of the TCP/IP network. The latter allows easy exchange of

application software during operation. Although the operating

system provides generic access to our hardware, i.e., I2C,

UART, and SPI, we implemented a hardware interface library

to provide higher-level access to the GPIC and the connected

sensors and actors.

2) Hardware Interface Library: The hardware interface

library is responsible for correctly controlling the sensors and

actors attached to the GPIC and providing high-level routines

to access them. The library provides a generic device type and

routines to send and receive data once the programmer has

configured the communication port and protocol. Upon this

generic device communication layer we implemented more

specific routines to access actors and sensors. New sensors

and actors can be easily attached to the GPIC and configured

during run-time if needed. The generality of the library makes

it easily applicable in other robotics systems.

3) Interprocess Communication: As mentioned above the

Linux operating system provides all necessary support for

TCP/IP networking. In order to control the blimp we use the

interprocess communication (IPC) framework of [12] based on

TCP/IP. The IPC framework allows to separate the processes

which accesses the actors and sensors of the blimp and

which actually control the blimp. In our configuration, a

central server process runs on the blimp and manages the

communication between several IPC client processes. One IPC

client process accesses the devices by the hardware interface

library and has to be executed on the blimp. However, other

controlling client processes can either be executed on the local

system for autonomous flights or externally. Another reason

for us to use the IPC framework is its platform independence,

i.e., it can be compiled for different architectures (e.g. ARM

on the blimp) and takes care of marshaling and unmarshaling

data.

IV. REINFORCEMENT LEARNING AS ONLINE

APPLICATION

In this section, we introduce how the blimp described so

far can be used as an autonomous platform. A fundamental

requirement for autonomous navigation in indoor environ-

ments are efficient controllers. Therefore, we consider the

task of stabilizing the blimp at a given goal altitude without

knowing the specific dynamics of the system or any parameter

of the environment. In practice, height control is already a

complex task as blimps are very sensitive and the behavior

highly depends on outer influences like payload, battery level,

temperature, and air flow. In the past, blimp controllers are

mainly based on standard controllers, e.g., PID or fuzzy logic,

or on the dynamics of the system. The disadvantages of such

approaches are the direct dependency on the parameter of

the dynamics. The optimal behavior cannot be guaranteed

if the conditions of the environment are not constant. In

general, it is hard to determine a globally suitable policy

applicable to several conditions. Therefore, we seek to learn

the best policy from scratch for the current conditions while

the blimp is in operation. If the real system learns online

without requiring any pre-defined controller or parameter, it

is robust against outside influences and independent of the

current conditions. For this task, we suggest the Monte Carlo

learning approach using Gaussian Processes to reinforcement

learning as proposed in [11].

Reinforcement learning [13] is based on the idea that

an agent interacts with a potentially unknown environment

and gets rewarded or penalized according to the actions it

performs. In this setting, the agent receives rewards for actions

that are beneficial in certain states for achieving a long-

term goal. The agent thus seeks to behave in a way that

maximizes its numerical reward. The goal is to determine a

policy function π, which maps each state to an action, so that

the overall reward is maximized.

The used learning approach apply the Monte Carlo method

to reinforcement learning. This has the advantage to learn

directly from experience while interacting online with a com-

pletely unknown environment. This enables us to learn without

prior knowledge and also in situations in which no simulation

environment is available. Formally, we seek to learn the state-

action function Q(s, a) : S × A → R, representing the

expected future reward when selecting action a in state s. In

our case, the states S consist of the altitude and the vertical

velocity of the blimp and the actions A represent the vertical

thrust of the propellers. To learn this function we gener-

ate episodes e1, . . . , eN from a sequence of measurements

(s1, a1), . . . , (sT , aT) obtained while the blimp is moving

through the environment. For each state-action pair (st, at)
in the sequence an episode et =

(

(st, at), . . . , (st+p, at+p)
)

is generated consisting of the p successor states. The length p

of an episode is defined by a factor γ. An episode ends if the

factor γp is smaller than a given threshold of 0.1. The expected

long time reward for a state-action pair is finally calculated by

R(st, at) =

p
∑

i=0

γirt+i , (1)

where γ ∈ [0, 1) is a discount factor and r the immediate

reward received when executing action a in state s. Finally,

the best policy is given by the maximum over the Q-value

5

function

π(s) = arg max
a

Q(s, a) . (2)

Another advantage of this learning approach is the usage of

Gaussian Processes [10] to approximate the Q-function. With

this framework, we are able to retain our observed data during

online learning and to predict the Q-values for previously

unseen states-action pairs. Therefore, not all states have to

be explored during the learning task and good policies can

be estimated even after a few learning steps. Furthermore,

in contrast to common Monte Carlo learning approaches, no

discretization of the state and action space have to be made.

This allows it to learn in continuous spaces which leads to

no discretization errors and better policies are expected. For

details about this learning approach, we refer to the work of

Rottmann et al. [11].

V. EXPERIMENTS AND EVALUATION

The following experiments describe our first experiences

with our blimp system. In order to get an overview of the

hardware performance we measured achievable throughput

rates to communicate with sensors and actors. Moreover, we

show that the assembled hardware and software framework are

applicable for complex tasks and evaluate the reinforcement

learning approach proposed in Section IV.

A. Performance Measurements

The progress of learning the behavior of an autonomous

robot in an unknown environment highly depends – apart from

the implemented models and algorithms – on the character-

istics of the attached actors and sensors and the latency of

actions and their effects. In the same way, the performance

of filter algorithms applied in dynamic systems is influenced

by the sampling rate of measurements. In order to get an

overview of the characteristics of the hardware equipment we

performed experiments considering throughput, sample rates,

and response times of the assembled devices.

The first experiment was to evaluate the direct commu-

nication performance between our system core unit and the

motor control unit. In our current configuration, the following

steps are performed to set the speed of a single motor: calling

the corresponding function of the hardware interface library,

creating a string command, selecting a port by setting the

corresponding GPIO address lines, and sending the string

command to the motor control unit via UART. The limiting

element considering performance in our configuration is the

115200 Baud UART bandwidth and the computation perfor-

mance of the attached hardware. As we have a maximum

length of six bytes for each command and two bytes for an

acknowledgment message we could transmit approximately

1440 commands per second to the motor control unit. Due to

the computation overhead we achieve a value of approximately

607.5 ± 9.9 commands per second, in practice. However, we

are convinced that this rate can be increased by optimizing the

code and the communication protocol.

In another experiment, we additionally considered the IPC

performance, i.e., motor control commands are initiated by

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600

n
u

m
b

e
r

o
f

m
e

a
s
u

rm
e

n
ts

 [
1

/s
e

c
]

object distance [cm]

theoretical rate
measured rate

Fig. 6. Sonar sample rate: The curve for theoretical rate is derived from
the sonic speed v = 333 m/s and does not take the system overhead into
account. The measured rate reflects the performance of the system including
the hardware and software.

an external Blimp Control IPC client and the local Device

Access IPC client calls the function of the hardware interface

library. In this scenario, we get an additional overhead for the

TCP/IP communication via the wireless link and can transmit

on average 187.8 ± 7.0 commands per second.

Due to the specification of our ultrasonic sensor, the latency

between triggering a measurement and availability of the result

is at most 65 ms for a maximum distance range of 11 m. How-

ever, this is only valid for the worst case. If the distance sobj

to the nearest object in the cone of the sensor is smaller, the

measurement result is available earlier and more measurements

can be performed in the same time interval. Additionally, the

sensor can be reprogrammed to operate in a lower maximum

distance range smax which would result in better sampling

rates. If we consider a distance s = min(sobj, smax) to an

object and a sonic speed v, the theoretical number of samples

per time interval T is n(s) = T ·v
2s

. Figure 6 illustrates the

theoretical and measured sample rate. The smaller the distance

s the more the overhead of the operating system and device

drivers become visible. For a typical indoor operating range

of 6 m we get a minimum sample rate of 27 measurements

per second.

We can summarize that the achieved rates should be suf-

ficient for most applications. However, our embedded sys-

tem and software framework is not limited to a blimp but

can also be applied in other aerial robots. Considering an

autonomous helicopter, for example, the latency should be

minimal between retrieving a sensor value, computation, and

performing an action. In this case, the communication between

external actors and sensors and the system core unit could be

switched to the SPI protocol which achieves much higher data

throughput.

B. Online Learning

This experiment demonstrates that our blimp system can

learn to control the altitude based on the experience gathered

during moving in the environment. We used the reinforce-

ment learning approach extended with Gaussian Processes

for approximating the Q-function. It also illustrates that our

6

 0

 1

 2

 3

 4

 0 50 100 150 200 250

a
lt
it
u

d
e

 (
m

)

time (sec)

online learning

Fig. 7. Evolution of the altitude during the learning progress to stabilize at
2 m.

approach efficiently learns on a completely model-free, real

system with unknown dynamics. To perform this experiment

we run the blimp in a factory building with a vertical explo-

ration space of 5 m. Figure 7 plots the altitude movement of

the blimp during the learning task. As can be seen, at the

beginning the blimp is exploring the states and in the course

of time the blimp is more and more exploiting the current

policy and finally stabilizing at the goal altitude of 2 m. In

an additional run as depicted in Figure 8 we compare the

policy of our learning approach with a standard controller.

We used a controller based on both the difference to the goal

altitude and the vertical velocity which leads in our setting

to a much better performance than a standard PID controller.

Anyway, the standard controller behaves suboptimal as the

current environmental conditions were unknown while the

parameters were established. Otherwise, the policy learned for

the current conditions stabilize the blimp much better at the

given goal altitude of 1 m.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a powerful, low-weight, and

embedded microsystem which is applicable for autonomous

blimps and other systems with size and weight constraints.

The modular structure of the hardware components and the

use of generic hardware interfaces and common bus protocols

facilitate the adoption of other actor and sensor systems. The

user benefits from a flexible software framework consisting

of a common Linux operating system and peripheral device

drivers. Finally, we demonstrated the capabilities of our blimp

system in the context of a reinforcement learning task.

Despite these encouraging results, there are several as-

pects that warrant future research. For example, we plan

to evaluate the use of dead reckoning algorithms for our

inertial measurement unit and consider further localization

techniques for aerial robots. In this context, the challenge

is to integrate appropriate algorithms which allow accurate

position estimations. Using localization techniques we also

plan to extend our reinforcement learning approach for 3D

worlds. Additionally, we plan to investigate how the learning

system reacts if the environmental parameters change abruptly

during online learning.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120 140

a
lt
it
u

d
e

 (
m

)

time (sec)

online learned control policy
standard controller

Fig. 8. Progress of applying the online learned control policy and a PID
controller while stabilizing at 1 m.

ACKNOWLEDGMENT

This work has partly been supported by the German

Research Foundation (DFG) within the Research Training

Group 1103.

REFERENCES

[1] T. Fukao, K. Fujitani, and T. Kanade. An autonomous blimp for a
surveillance system. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2003.
[2] T. Fukao, K. Fujitani, and T. Kanade. Image-based tracking control of

a blimp. In Proc. of the IEEE Conf. on Decision and Control, 2003.
[3] W. Green, K. Sevcik, and P. Oh. A competition to identify key challenges

for unmanned aerial robots in near-earth environments. In Proc. of the
Int. Conf. on Advanced Robotics (ICAR), 2005.

[4] E. Hygounenc, I-K. Jung, P. Soueres, and S. Lacroix. The autonomous
blimp project at laas/cnrs: Achievements in flight control and terrain
mapping. In International Journal of Robotics Research, 2003.

[5] I-K. Jung and S. Lacroix. High resolution terrain mapping using low
altitude aerial stereo imagery. In Int. Conf. on Computer Vision, 2003.

[6] J. Kim, J. Keller, and V. Kumar. Design and verification of controllers
for airships. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2003.
[7] J. Ko, D. Klein, D. Fox, and D. Hähnel. Gaussian processes and

reinforcement learning for identification and control of an autonomous
blimp. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2007.

[8] RCGuys Radio Control Models http://www.rcguys.com.
[9] J. Rao, Z. Gong, J. Luo, and S. Xie. A flight control and navigation

system of a small size unmanned airship. In Proc. of the IEEE

Int. Conf. Mechatronics and Automation, 2005.
[10] C.E. Rasmussen and C. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006.
[11] A. Rottmann, C. Plagemann, and W. Burgard. Autonomous blimp

control using model-free reinforcement learning in a continuous state
and action space. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2007.

[12] R. Simmons and D. James. Inter-Process Communication: A Reference

Manual (for IPC Version 3.6), 2001.
[13] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998.
[14] S. Varella Gomes and J. Ramos. Airship dynamic modeling for

autonomous operation. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 1998.

[15] G. Wyeth and I. Barron. An autonomous blimp. In Proc. of the IEEE

Int. Conf. on Field and Service Robotics, 1997.
[16] H. Zhang and J. Ostrowski. Visual servoing with dynamics: Control of

an unmanned blimp. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 1999.

