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Abstract— In this paper, we present an approach for directing
a mobile robot under real-world conditions into a target position
by means of pointing gestures only. Because one objective of
our work is the development of a low-cost system, we only
used a monocular vision system. As first step, our approach
employes a Background Substraction technique and a histogram
equalization in a preprocessing step to work in environments with
structured backgrounds and under variable lighting conditions.
Furthermore, a Discriminant Analysis was used to find the best
features for the pointing pose estimator. For the estimation
process, different types of Neural function approximators were
implemented and compared with each other. The approach
presented in this paper has been also implemented on our mobile
interaction robot HOROS to determine the performance of under
real-world conditions. The best algorithm is able to estimate
the target position in real-time on the robot. Furthermore, we
compared the accuracy of our approach with humans performing
the same estimation task, and achieved very comparable results.

Index Terms— Human-Robot Interaction, Vision, Gesture
Recognition

I. INTRODUCTION AND STATE-OF-THE-ART

In recent years, a lot of research work has been done to
develop intelligent mobile robot systems, which can interact
even with non-instructed users, making the robots suitable for
applications in everyday life. Todays robot systems mainly
provide a keyboard, a touchscreen or other input devices
for getting input from the user. More and more projects
try to integrate a speech recognition onto the robot, but a
robust speech recognition is still a hard problem. But besides
this verbal communication also the non-verbal communication
plays a very important role in a dialog between humans. To the
best knowledge of the authors, only a few projects have already
successfully integrated non-verbal communication aspects in
an interactive dialog on their mobile robots. In the work
presented in this paper, we show how a basic non-verbal
communication (more precisely: the problem, of instructing
a mobile robot by the use of pointing gestures/poses) can be
realized on a mobile robot system.

In the field of mobile service robotics, the possibility to
direct the robot to a certain position is an important part of
the interaction. Gestures or poses (sometimes in combination
with spoken commands) are a very intuitive way to instruct the
robot without the use of certain input devices (e.g. a joystick).
Up to now, a lot of work has been done focusing on integrating
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gesture recognition into Man-Machine-Interfaces. However,
most of this work concentrates on distinguishing different
gestures, creating a command alphabet for robot control.

Rogalla et al. [1], for example, presented a system that
classifies hand postures for robot control. They use monocular
high-resolution color images and extract a hand contour by
means of skin color segmentation. This contour is sampled
with a fixed number of sampling points, normalized and
Fourier-transformed. The Fourier descriptors represent the
feature vector that is classified using a model database and
a distance measurement.
Paquin and Chohen [2] also use a skin color segmentation
to track the hands and the head of a user. They use a
Neural Network based approach to classify the trajectories
recorded during the progress of the gesture and are able to
recognise nine different robot instruction gestures like ”stop”
or ”forward”.
Triesch and v.d. Malsburg [3] detect and classify hand postures
in monocular images by using Compound Bunch Graphs. No
explicit segmentation is needed, since their system can cope
with highly complex backgrounds. The features used are the
responses of Gabor wavelets and color information at the graph
nodes. Hand poses are classified using a distance measure to
a model graph, taking into account deformation and scaling.

A major problem of all these approaches is, that the specific
commands of the command alphabet have to be known by
the user. Another problem is, that the directing of the robot
based on simple discrete commands is only possible in certain
steps (for example ”drive forward”, ”drive to the left” and
again ”drive forward” to direct a robot to a position 30◦ in
front of the starting position), since typically only one of these
commands can be executed at a time.

A much more intuitive and smoother way to direct the
robot is through pointing directly at the target position on the
ground. In [4, 5] for the first time we presented an approach,
which allows to direct a mobile robot to a certain position
by means of such pointing poses. The system presented was
capable of estimating the target point of the pointing gesture
on the floor with a low error, but could only operate in
environments with unstructured background and ideal lighting
conditions. Besides, a computation time of 3-4 seconds was
required for the estimation of a single target. These constraints
conflict with the requirements for the usage of this approach
in robotic real-world applications. Therefore, in this paper we
present several conceptual and methodical improvements on
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this approach making it possible to estimate the target point
of a pointing pose also in highly structured environments with
variable lighting conditions in real-time.

This paper is organized as follows: After this introduction,
Section II introduces our mobile robot platform HOROS,
which was used again for extended investigations. After that,
Section III explains, how the pointing poses can be estimated
and how our entire system is designed. In Section IV the
experiments and results will be presented. The papers ends
with conclusions in Section V.

II. THE MOBILE ROBOT HOROS

The approach described in this paper was developed and
tested on our mobile robot HOROS (HOme RObot System).
HOROS’ hardware platform is an extended Pioneer II based
robot from ActivMedia. It integrates an on-board PC (Pen-
tium M, 1.6 GHz) and is equipped with a SICK laser range-
finder and a ring of sonar sensors (see Fig. 1). For the purpose
of HRI, the robot was equipped with different interaction
oriented modalities. This includes a tablet PC for touch-based
interaction, speech recognition and speech generation. HOROS

was further extended by a simple robot face which integrates
an omnidirectional fisheye camera situated in the center of
the head, a camera with a telephoto lens mounted on a tilting
socket on the forehead, and a wide-angle camera in one of the
eyes. Because one objective of our project is the development
of a low-cost prototype of a mobile and interactive robot
assistant, we are especially interested in vision technologies
with a good price-performance ratio. Therefore, the two low-
cost frontal cameras were utilized instead of a high-end stereo-
vision system. This forces us to develop powerful and robust
recognition algorithms allowing to compensate the deficits of
the hardware. In this context, we were interested if it would
be possible to robustly estimate a target position at the floor
from a pointing pose using only inexpensive hardware and
monocular images.

Fig. 1. Mobile service robot HOROS, used for experimental investigation of
the pointing pose estimation. The images for the estimation of the pointing
target were taken with the firewire camera (located in the left eye).

HOROS is controlled by a highly flexbile and extensible
control architecture described in [6]. The approach described

in this paper was implemented in this control architecture
framework, which allows to use other existing modules for
our application, e.g. the speech recognition system can be used
as a trigger signal (”HOROS, go there!”) for the start of the
estimation for the target point.

III. ESTIMATION OF POINTING POSES

In the following subsections the estimation of the pointing
pose based on monocular images is explained in detail.

A. Architecture for a pointing pose estimation system

To develop a system for an interactive mobile robot, which
enables the robot to move to a referred point on the ground a
complex architecture (see Fig. 2) is necessary.

First a Pointing Pose Estimation Module is needed, which
can estimate the referrend point on the ground based on a
sequence of monocular images. For this estimation process
a face detection system [7] is used to find the position of
the head (xhead, yhead) of the user in the image. Moreover,
a multimodal person tracker [4, 5] is utilized to determine
the direction φuser and the distance duser of the user to the
robot. These data are processed to select the regions of interest
(ROI) in the input image for the subsequent feature extraction.
The feature extraction estimates the radius rpose and the angle
φpose of the pointing pose in a user-centered polar coordinate
system (see Section III-B). With the tracking result from the
person tracker and the estimated radius and angle, the referred
goal point (xgoal, ygoal) on the ground can be computed in a
local, robot-centered coordinate system. Given the current pose
of the robot (xrobot, yrobot, φrobot), the local goal point can be
translated in the world coordinate system of the environment
model. This enables the robot to move to the referred target
point avoiding obstacles during the movement by means of
the navigation module.

Fig. 2. Architecture of the proposed visual instructing system. The Pointing
Pose Estimation Module (right) uses face detection and people tracking
subsystems to estimate the pose on the ground, and a navigation module
executes the movement of the robot to the estimated target point.
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To embed this estimation process in an interactive dialog, a
speech recognition module can be used as a trigger signal.
A first speech command (e.g. ”HOROS”) is used to start
the estimation process, while a second command (e.g. ”Go
there!”) is utilized to finish process and start the autonomous
movement of the robot. Additionally, an interrupt command
(e.g. ”Stop!”) enables the user to interrupt and stop the
movement of the robot.

B. Training-Data and Ground-Truth

To develop the Pointing Pose Estimation Module, a labeled
set of images of subjects pointing to target points on the floor
was required to train the system. We encoded the target points
on the floor as (r, ϕ) coordinates in a subject-centered polar
coordinate system (see Fig. 3) and placed the robot with the
camera in front of the subjects. Moreover, we limited the valid
area for targets to the half space in front of the robot with a
value range for r from 1 to 3m and a value range for ϕ from
−120◦ to +120◦. The 0◦ direction is defined as the user-robot-
axis, negative angles are on the user’s left side. With respect
to a predefined maximum user distance of 2m, this spans a
valid pointing area of approximately 6 by 3m on the floor in
front of the robot in which the indicated target points may lie.
Figure 3 shows the configuration we chose for recording the
training data. The subjects stood at distances of 1, 1.5 and
2m from the robot. Three concentric circles with radii of
1, 2 and 3m are drawn around the subject, being marked
every 15◦. Positions outside the specified pointing area are
not considered. The subjects were asked to point to the
markers on the circles in a defined order and an image was
recorded each time. Pointing was performed as a defined
pose, with outstretched arm and the user fixating the target
point (see Fig. 3, right). All captured images are labeled with
distance, radius and angle, thus representing the ground truth
used for training and for the comparing experiments with
human viewers (see Section IV). This way, we collected a
total of 2,340 images of 26 different interaction partners (90
different poses for each subject). This database was divided
into a training subset and a validation subset containing two
complete pointing series (i.e. two sample sets each containing
all possible coordinates (r, ϕ) present in the training set). The
latter was composed from 7 different persons and includes a
total of 630 images. This leaves a training set of 19 persons
including 1,710 samples.

C. Image Preprocessing and Feature Extraction

Since the interaction partners standing in front of the camera
can have different body height and distance, an algorithm had
to be developed that can calculate a normalized region of
interest, resulting in similar subimages for subsequent pro-
cessing. We use an approach suggested in [4, 5] to determine
the region of interest (ROI) by using a combination of face-
detection (based on the Viola & Jones Detector cascade [7])
and some empirical factors. With the help of a multimodal
tracker [4, 5] implemented on our robot, the direction and the
distance of the robot to the interacting person can be estimated.
The cropped ROI is scaled to 160*100 pixels for the body

Fig. 3. The left image shows the configuration used for recording the ground
truth training and test data: The subjects stood in front of the robot and pointed
at one of the marked targets on the ground. The distance of the robot to the
subject varied between 1m and 2m. The images on the right show typical
examples of images of subjects taken by the frontal camera of the robot
in several demanding real-world environments with background clutter and
different lighting conditions (in contrast to earlier approaches of us presented
in [4, 5]).

and the arm and 160*120 pixels for the head of the user.
Additionally, a histogram equalization is applied to improve
the feature detection under different lighting conditions. The
preprocessing operations used to capture and normalize the
image are illustrated in Fig. 4. To reduce the effects of different
backgrounds, in the improved version of our system we used
a simple Background Subtraction algorithm. For that, the
difference image between the start command (”HOROS”) and
the second command (”Go there!”) is computed and post-
processed with a closing algorithm and a search for connected
regions [8] (see Fig. 5). The influence of the Background
Substraction on the pose estimation result was tested in
comparsion with our approach in [4, 5] where no Background
Subtraction was used (see Section IV). On the normalised
image regions, features were extracted to approximate the
pointing pose of the user. In our work, Gaborfilters of different
orientations and frequencies, bundled in Gaborjets that are
located on several fixed points in the selected ROIs, are
used. The several steps of preprocessing and feature extraction
applied in our comparison are shown in Fig. 4.

Fig. 4. Steps of preprocessing and feature extraction: the raw distorted image
of the lowcost camera in the robot’s eye (a) is transformed into an undistorted
image, and the face of the user is detected by means of [7] (b). Based on
the height of the face in the picture and the distance of the user given by the
person tracker, two sections of the image are captured and transformed into
grayscale images (c). On these images a histogram equalization is applied
(d). Subsequently, distributed features are extracted by Gaborfilters placed at
pre-defined points of the image (marked as red dots in (e)). A Background
Subtraction (see Fig. 5) was optionally used between steps (d) and (e).

D. Discriminant Analysis

The Discriminat Analysis [9, 10] is a well-known technique
to figure out the most relevant features in a feature space for
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Fig. 5. The Background Subtraction used in our approach. (a): by the use
of a command word (for example the name of our robot HOROS) the user
triggers the capture of a new background image. When the user is pointing
at the target, the current image (b) is subtracted from the background image
resulting in a difference image (c). With the help of a closing algorithm and
the search for connected regions [8] the image is post-processed resulting in
an image with the segmented user (d).

the separation of two or more classes. In our approach, we used
the Discrimiant Analysis for two purposes: First, to achieve a
higher robustness against cluttered backgrounds and, second
to reduce the computation time to estimate the target position
based on the describing features.
To determine the importance and the contribution of a single
feature k on the estimation of a target position, the following
simple feature selection was applied: First, the Gaborfilter
answers for the selected feature was computed at all samples
of the training data set mentioned in Section III-B. Every value
was assigned to a certain class r which was defined through
the target point the subject refered to in the current sample.
Then, for feature k the discriminant value σ

(k)
rs between the

classes r and s was computed as follows:
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gets a high value if the samples of each class have a little intra-
class variance (the term bellow the fraction stroke) and if the
different classes do not overlap (the inter-class variance given
above the fraction stroke). The results of equation (1) - applied
for all combinations of two classes r and s - were summed
up resulting in a single discriminant value for the feature k.
Figure 6 shows the discriminant values for selected features.
Gaborfilters with high dicriminant values directly correspond
to the possible alignments of the pointing arm, while features
with low values correspond to Gaborfilter positions and/or
orientations which are not associated with the appearance of a
pointing arm but with objects or structures in the background
of the picture (clutter). By extracting only those features
showing high dicriminant values and ignoring features with
low dicriminant values, we achieved higher robustness against
cluttered background and a considerable faster computation
since less Gaborfilter features had to be determined.

E. Approximation of the Target Point

In [4, 5] a cascade of several Multi-Layer Perceptrons
(MLP) was used to estimate the target point from the extracted

Fig. 6. Determination of important features with the help of a Discriminant
Analysis: the bar chart shows the discrimiant values of the Gaborfilter features
(A to D, shown top left) for each of the fixed filterpoints in one vertical line
in the image. Top right, the filter with the highest discriminant value at the
certain position is displayed. Obviously, filters with high dicriminant values
directly correspond to the possible orientations of the pointing arm of the
subjects.

features. However other techniques are also often used for
the estimation of certain human poses, however, till now not
on mobile robots but under predefined observation conditions
in stationary scenarios. Nölker et al. [11] used a Local Linear
Map (LLM) and a Parametrized Self-Organizing Map (PSOM)
to estimate the target of a pointing pose on a screen the user
is pointing to. In [12] Gaborfilters and a LLM are utilized to
estimate the head pose, while Stiefelhagen [13] presented a
stationary system that works on edge-filtered images and uses
a MLP for head pose estimation. To give an overview of the
suitability of different approaches for the task of estimating
a pointing pose on a monocular image we implemented
and compared several relevant approaches, which all were
trained and tested with the same sets of training and test data
(see Sec. III-B). Therefore, for evaluation of the different
approaches all obtained results can be directly compared
with each other. In the following paragraphs the different
approaches used for comparison are presented roughly:

k-Nearest-Neighbour Classification: The k-Nearest-
Neighbour method (k-NN) is based on the comparison of fea-
tures of a new input with features of a set of known examples
from the training data. A distance measure is used to find the k
nearest neighbours to the input in the feature space. The label
that appears most often at the k neighbours is mapped on the
new input. This method only allows classification and not an
approximation between the labels of two or more neighbours.
Therefore, we slightly modified the method in our approach.
Now the label for the input fk(x) is determined as follows:

fk(x) =
∑

i

li ·

(

1/di
∑

j 1/dj

)

(2)

This way the labels li of the k nearest neighbours contribute
to the output and are weighted with their Euclidian distance
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di to the input x.

Neural Gas: A Neural Gas network (NG, [14])
approximates the distribution of the input data in the feature
space by a set of adapting reference vectors (neurons). The
reference vectors wi of the neurons are adapted independently
of any topological arrangement of the neurons within the
neural net. Instead, the adaptation steps are affected by
the topological arrangement of the receptive fields within
the input space, which is implicitly given by the set of
distortions Dx = {‖x − wi‖ , i = 1, · · · , N} associated with
an input signal x. Each time an input signal x is presented,
the ordering of the elements of the set Dx determines the
adjustment of the synaptic weights wi. In our approach, each
neuron also has a label li which is adapted to the label of the
input signal.

Self-Organizing Map: An approach very similar to the
NG is the well known Self-Organizing Map (SOM, [15]).
The SOM differs from the NG in the fact that the neurons of
the SOM are connected in a fixed topological structure. The
neighbours of the best-matching neuron are determined by
their relation in this structure and not by their order in the
set Dx. We modified the SOM so that every neuron also has
a learned label (similar to LVQ).

Local Linear Map: The Local Linear Map (LLM, [16]) is
an extension of the Self-Organizing Map. The LLM overcomes
the discrete nature of the SOM by providing a way to approx-
imate values for positions between the nodes. A LLM consists
of n nodes representing a pair of reference vectors (win

i , wout
i )

in the in- and output-space and an associated linear mapping
Ai which is only locally valid. The answer ybm of the best-
matching neuron of the LLM to an input x is calculated as
follows:

ybm = wout
bm + Abm

(

x − win
bm

)

(3)

The weights and the mapping matrix are also learned during
the training process.

Multi-Layer Perceptron: For our experimental compari-
son, we also used a cascade of several MLPs as decribed in
[4, 5]. The (r, ϕ) coordinates of the target point are estimated
by separate MLPs. The radius r is estimated by a single
MLP while ϕ is determined by a cascade of MLPs which
first estimate a coarse angle ϕ′ and second the final angle ϕ
depending on r and ϕ′.

IV. EXPERIMENTS AND RESULTS

We divided the experiments into two groups. At first,
we tested the different function approximators with the test
data, which were recorded with the subjects described in
Section III-B. These tests were used to indicate which function
approximator is the best for the problem of estimating the
target point of a pointing pose. Second, we tested the capability
of the estimation system on the robot with the best function
approximator. This way, we can measure, how much the
estimation error of the pose estimator on the test data is

increased by real-world influences, like the odometry error of
the robot or the detection error of the face detector.

To have a simple reference for the quality of the estimation,
10 human subjects were asked to estimate the target point
of a pointing pose on the floor. At first, the subjects had to
estimate the target on a computer screen where the images
of the training data set were displayed. The subjects had to
click on the screen at the point where they estimated the
target. Thus, the subjects were estimating the target on the
images having the same conditions as the different function
approximators. Second, we determined the estimation result
the subjects achieved under real-world circumstances. Here,
each subject had to point at a target on the ground, and a
second subject had to estimate the target. At first the recog-
nizing person used both of their eyes to estimate the target,
later we blindfolded one of the eyes and the person estimated
the target again under monocular conditions. The results of the
human based reference experiments are illustrated in Fig. 7.
The label Human (srceen) refers to the experiments on the
computer screen and the labels Human (2 eyes) and Human
(1 eye) refer to the results under real-world conditions.

Fig. 7. The results for the estimation of the target point of the pointing pose.
The target point is determined by the radius r and the angle ϕ. Fig. (a) and (b)
show the separate results for the estimation of r and ϕ. For each method the
percentage of the targets estimated correctly and the mean error is determined.
Fig. (c) shows the results for the correct estimation of both values r and ϕ.
The results of the human viewers (on computer screen, and in reality (with
both eyes ”Human (2 eyes)” and with one eye blindfolded ”Human (1 eye)”))
are given for comparison. Methods that achieve a result comparable to that
of the human viewers are marked with a shaded background with different
colors.

The results of the several approaches for estimating the
target position are shown in Fig. 7. As described in Sect. III-B
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the ground truth data is a tuple (r, ϕ) with the target radius r
and the target angle ϕ. The separate results for the estimation
of r and ϕ are shown in Fig. 7(a) and Fig. 7(b). For the
correct estimation of the target point, r as well as ϕ had to
be estimated correctly. We defined the estimation result to be
correct if r differed less than 50cm from the ground truth
radius and ϕ differed less than 10◦ from the ground truth
angle. Figure 7(c) shows the results for a correct estimation
of both values.

Every of the five selected approaches was trained on the
same training data set and tested on the same test data set.
For each system, we used four different feature extraction
strategies: first only Gaborfilters were utilized, second we com-
bined Gaborfilters with an additional Background Subtraction
to reduce the effects of the different cluttered backgrounds
in the images. Third, we used only those Gaborfilters that
had a high discriminant value extracted by means of the
Discriminant Analysis executed over all predefined Gaborfilter
positions (see Section III-D). Fourth, we combined Gaborfilter,
Background Subtraction and utilized only the relevant features
extracted by the Discriminant Analysis.

The results demonstrate, that a cascade of several MLPs as
proposed in [4, 5] is best suited to estimate the target position
of a user’s pointing pose on monocular images. A Background
Subtraction and the information delivered by a Discriminant
Analysis can be used to improve the results for all different
classifier systems. The usage of this two algorithms, combined
with the histogram equalization in the preprocessing step, now
also allows to handle background clutter and different lighting
conditions, which was not able in our previous work. The best
system is capable of estimating r as good as humans with
their binocular vision system in a real-world environment and
even better than humans estimating the target on 2D screens.
The estimation of ϕ does not reach equally good values. The
system is able to reach a result equally to that of humans on
2D screens or humans with one eye blindfolded, but it is not
able to estimate the angle as good as humans in a real-world
setting using both eyes. This can be explained, because the
estimation of the depth of a target in a monocular image is
difficult for both, human and function approximators.

The implemented Pointing Pose Estimation Module is able
to run in real-time. The total computation time (on an Athlon
XP 2800 CPU) with Background Substraction and Discrim-
inant Analysis was 38ms for the NG, 42ms for the SOM,
35ms of the LLM and 31ms of the MLP cascade. The k-NN
classifier requires 129ms and is therefore not suitable for real-
time processing.

After selecting the MLP cascade (with Background
Subtraction and Discriminant Analysis) as the best function
approximator (based on our experiments described above),
we tested the whole system under real-world conditions with
our mobile robot HOROS. Under such conditions, small errors
of the face-tracking system, the speech recognition module,
the person tracker, the navigator and the odometrie of the
robot are integrated and reinforce the error of the Pointing
Pose Estimation Module. Under real-world conditions the
robot reached the selected target in 45.1% of the tests, which
is an additional error of 5.5% compared to the test data set.

The correct radius of the target was estimated in 86.3% and
the correct angle of the target in 47.1% of the tests. The
results of these real-world experiments confirm the results
of our experiments on the test data (see Figure 7) with an
additional error of 4-6% due to the errors in the input data
for the Pointing Pose Estimation Module.

V. CONCLUSION

In this paper we presented an extension to our earlier
approach introduced in [4, 5]. The major problems of the
old approach - bad results in environment with structured
background and a computation time which exceeds real-time
requirements, could be solved. Extensive experiments with
different function approximators have shown, that the MLP-
based approximator leads to the best estimation result. The
realized approach is able to estimate a pointing position on
the ground given only by monocular images with an accuracy
equal to humans. Moreover, it works now in real-time. This
enables the user to control a mobile robot system into a target
position only by means of pointing gestures. We also have
shown, that our approach easily can be integrated in a complex
robot control architecture.
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