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Abstract— In this paper we present a scheme to train a robot
by a human teacher in a series of training phases from supervised
training via correcting advises, reinforcement based training and
internal critic to completely autonomous, unsupervised training.
The controller of the robot consists of a network of artificial
immune systems based RLAs that build up the hierarchical
systemic architecture. In this paper we present new promising
results from simulations and from a real robot system that has
been trained with the proposed scheme.

Index Terms— Systemic Architecture, RLA, Autonomous
Robots

I. I NTRODUCTION

Teaching robots instead of programming them, is one of the
most interesting ideas for robot control nowadays. A lot of
approaches has dealt with training some of the functionalities
of the robots by neural networks and other AI or machine
learning methods [8]. Typically only a small fraction of the
robot controller is adapted using these techniques [5]. Other
approaches try to take the robot as an entire system and teach
the robot some behaviours [2].

Most of these approaches use only one single learning
and teaching paradigm to improve the robots capabilities.
Therefore, they all have a problem to depict how the robot got
the required basic abilities, and how the learning process can
continue. Basic ideas for the presented work has been inspired
by the idea to grow a robot up from an infantile system to a
fully matured entity e.g. see [10]

The presented approach is trying to close exactly this gap.
Starting with a complete “dumb“ robot, the first steps are
made by extensive supervision of a teacher. During the training
process the need for the teacher is reduced further and further,
reaching an almost autonomous system, that is capable of
improving its capabilities on its own (to some extent).

Some recent work has been published on training a robot
control system with an artificial immune system based ap-
proach [4], [12] with reinforcement learning [9] is ending up
with a very large system of active units, after a tremendous
large number of training steps. The approach presented here,
is trying to overcome this effect by using the knowledge of
a teacher in the beginning. Preliminary work following the
proposed approach has recently been published [6] and [7].

II. T HE APPROACH

The entire approach of making the robot autonomous by
a specialised training procedure is based on three major
paradigms:

• Training in selected phases
Training the robot is performed in a set of phases which
will consequently get rid of help from the teacher: from
(1) supervised training, via (2) correcting advises, to (3)
a reinforcement, followed by (4) building up an internal
critic system to finally (5) unsupervised, critic based
improvement.

• RLAs as core elements for the controller
The controller is build up from a set of elements (RLAs)
that implement a Rule-Like-Association System. Each
RLA combines a condition (C) with an action (A) to
be performed, and an expectation (E) that is likely to be
the resulting situation. Several of these RLAs combine
together to the RLA-System that allows a kind of action
planning.

• Hierarchical systemic architecture
The modular concept Systemic Architecture [3], is among
other specifications, organised in layers. Each layer is
representing a stage of capabilities for the robot that have
been reached during the robot‘s individual development.
The modules within the layers are implemented as trained
RLA-systems.

III. RLA S YSTEM

Rule-Like-Association Systems are a development inspired
from artificial immune systems approaches. They have been
successfully applied for robot control, and training robot
behaviour with reinforcement based learning. They implement
a special kind of knowledge base, that enables a limited kindof
planning possibilities. The RLA systems gets a situation vector
S defined in input or feature space, and delivers actions to be
performed. The RLA systems consists of a lot of individual
RLAs that can be combined together (see Fig. 1).

A. RLA Structure

Each RLA item of the RLA system is structured into
three parts: a Condition part (C), an Action part (A) and an
Expectation part (E). Whenever a situation fulfils the condition
stored within one of the RLAs, this very RLA is turned
on and the respective action (A) is activated (e.g. command
for a robot). For controlling robots the association between
condition and action would be sufficient. The Expectation
part is dedicated to enable planning capabilities for the RLA
system.

1) Condition C: The condition part of the RLA is typically
implemented as a vectorC defining a special positionS
in feature spaceF . The components of this feature vector
S reflect the situation the robot is in. Typically the feature
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Fig. 1. Example of a RLA system with 3 RLAs. Choosing RLAX and
performing its actionAx could lead to the situation described inCy, or to
the situation described inCz . Choosing RLAY leads to the situationCz .
RLA Z is antecessor of RLAX.

vectorS consists of low level values from the primary sensors
(distance sensors . . . ), from virtual sensors derived from the
primary sensor values (measure of parallelism,. . . ), internal
values of the robot (battery state, motor values, simulated
emotions, . . . and the results from information processing steps
(position within a map, object detection . . . ). If the actual
situationS of a robot matches the conditionCi of one RLA
this RLA is turned on in a Winner-Takes-All manner. The RLA
with the smallest distance betweenS andCi is therefore the
RLA with the best description of the current situation, and
could be used to control the robot. If the distance between
situationS and winning conditionCi smaller than a confidence
radiusR, the winning RLA controls the robot. If the distance
is outside the confidence radiusR, the Ci description of the
current situation is not satisfactory. Then the current situation
is declared as unknown, the motors are stopped and the
learning procedure demands for a new command from the
teacher.

2) Action A: The Action part of an RLA is storing the
respective action that has to be activated when an RLA is
turned on. The actions can be low-level (e.g. direct motor
values, switch on/off, ...), mid level commands (e.g. control
loops, ...), simple behaviours (e.g. wall following, ...) or
complete high level tasks (e.g. build a map, find an object,
...). Typically the actions stored and activated belong to apre-
defined repertoire of valid actions. Note, that the action can
be a complete RLA system implementing a set of complex
behavioural action sequences.

3) Expectation E:The Expectation part (E) of the RLAs
[4], [12] is designed to store the expected situationEi after
performing the actionAi can serve as basis for planning
algorithms. In contrast to previous published work [9], [6], [7]
the expectation part has been omitted in the presented work.

B. RLA Network

A set of several RLAs that work together to perform a
special task is called an RLA network. Each individual RLA
implements just a reaction to a condition in feature space, but

the combination of several of these RLAs can establish a com-
plete behaviour (e.g. wall following). While the RLA system
is working, the situationS is compared to the conditionsCi

and the RLAi triggers the respective stored actionAi. Thus,
the robot performs actions and reaches different situations
S(t). The interconnection graph that represents the statistics
of follow-up RLAs is called the RLA network: the nodes of
this graph are the RLAs, the directed edges are weighted with
the percentage of transitions between these two RLAs.

IV. T RAINING IN PHASES

The major idea behind the phase-based training is to include
different kinds of teaching and training to reduce the depen-
dency on the teacher step by step. Therefore, we start with a
completely untrained system and build up the knowledge base
(RLA system) until the robot controller can act autonomously.
As a remark: Bad teachers will create bad behaviour.

We have scheduled the training procedure into 5 phases
that have different training characteristics. Please note, that
the phases can, and will overlap during the training process,
they are not strictly separated from each other.

1) Supervised Training: The teacher creates new RLAs
2) Correcting Advises: The teacher corrects existing RLAs
3) Reinforcement: The teacher gives a binary feedback
4) Internal Critic: The teacher creates the appraisal RLA
5) Unsupervised Improvement: The appraisal RLA system

is used as internal critic

A. Supervised Training (1)

Whenever the controller encounters a situation where none
of the available RLAs has a conditionCi similar enough to
the current situationS(t), the robot stops and asks the teacher
for advise. The teacher gives a distinct command how to react
in this very situation by specifying an action from the allowed
repertoire.

Implemented as RLA approach: the teacher creates a new
RLA j, the current situationS(t) the robot is in, is taken as
condition Cj , the command of the teacher (taken from the
allowed repertoire) is stored as actionAj for this new RLAj.
The expectation partEj is left blank, and will be filled when
the robot is using this very RLA later on. The next time, the
robot is in this situationS, the RLA j will be turned on, and
the robot will react accordingly withAj .

Thus, a set of RLAs is created one by one and the robot
is more and more capable to act without the help from the
teacher.

It was found to be a good advice for the teacher to give
clear, and distinct commands how to complete a given task.

B. Correcting Advises (2)

Once the RLAs are active and controlling the robot, it might
turn out that some of the actions trained in phase (1) are not
chosen carefully enough. In this case, there is the possibility
to improve the behaviour by changing the respective action
Ai, or even by completely deleting an entire RLA while the
robot is running.
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Fig. 2. Number of RLAs that were created during supervised training phase
for the task of Wall-Following. The different curves are a result of a different
confidence radiusR during training.

The longer the training process of phase (1) and (2) has been
accomplished the fewer corrections will become necessary.

Once again, it is a good advice for the teacher to have a
clear vision how to complete the given task.

C. Reinforcement (3)

To further reduce the need for intervention of the teacher,
phase (3) implements a reinforcement based learning [11].
The teacher has only to provide a reinforcement signal as
direct feedback of the current behaviour, and the reinforcement
learning will improve the RLA system through learning. To
use the TD-learning scheme a state value function and aε-
greedy extension to the Winner-Take-All selection of the RLAs
is implemented.

A crucial parameter for reinforcement of real world systems
is the temporal aspect. The current RLA might not be the
adequate RLA to blame or to reward for the current situation.
Typically a set of conditions and actions (RLAs) encountered
before the current situation should be rewarded. We have
implemented an eligibility trace, with different learningef-
fectivity for the most recent activated RLAs.

D. Internal Critic (4)

It is a well known fact, that reinforcement based im-
provement, might require a large number of reinforcement
commands. To further reduce the presence of a human teacher,
phase (4) implements an internal critic, to train, and improve
the RLA system. The internal critic tries to mimic the re-
inforcement commands of the teacher, and will subsequently
substitute his commands.

The approach presented here, is to implement the internal
critic as a special appraisal RLA system. The condition vector
of these RLAs will focus more on mid-level or high-level
situations, and lesser on low-level sensory values. The actions
of this internal critic will be reinforcement signals dedicated
to be used as input to the reinforcement learning of phase (3).

In phase (4) the teacher puts the robot in selected, exemplary
situations and creates an appraisal RLA, with a clear statement

if this situation is positive or should be avoided. The action
part of these appraisal RLAs is the positive or negative rein-
forcement signal, including the temporal eligibility parameter
for the reinforcement learning. The expectation part is omitted
at the present stage of development. It could be used to
implement some kind of planning in reinforcement space.

E. Unsupervised Improvement (5)

Once the appraisal RLA system is up and working, its
output can be used as an adapted critic to train and improve
the RLA system which was set up in phase (1), (2) and (3).
With this internally generated reinforcement signal, the robot
evaluates its previous actions and transitions of RLAs, and
alters the existing RLA network.

V. L AYERS OF THE SYSTEMIC ARCHITECTURE

A systemic architecture is a design principle for building
controllers. The architecture is structured in layers representing
different hierarchies of capabilities. Several mid levelsor
higher levels can exist. The systemic architecture provides an
information up-stream for the sensory data, and a commanding
down stream for the activities.

A. Low Level

The lowest level of sensory data are the primary sensors
(e.g. distance sensors, ...) they can be used as components for
the features space; situationS and conditionC. The lowest
level actions are direct commands to the actuators (e.g. motor
speed). They can be used as repertoire for the RLA action
part (A). Low level expectations are typically motor or sensory
situations.

B. Mid Levels

The mid level sensory items are the result of information
processing modules. These results can be a part of the feature
space as well: e.g. the result from a localisation process, or
a local vicinity map, or the output of an object recognition
process (e.g. doorfinding). The mid level commands trigger
complete behaviours. They can be rather simple like wall
following, or more complicated like explore the world and
build a map. Mid level behaviours can be realised through
complete RLA systems. The mid level expectations are typi-
cally situations like no object in front, wall on left, door next
to the right, parallel to wall on left side, . . . .

C. Planning

The planning level within the systemic architecture is just
one variant of the higher level capabilities. Within this level
the upstream information is aggregated and used to implement
a plan based behaviour for the system. This level is referring
to the RLA system, but typically not implemented by RLAs
alone. A planning algorithm which is working on the estab-
lished RLA expectations (E) can be implemented to find an
RLA to start from for reaching the desired expectation (e.g.
door, exit from maze, . . . ).
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VI. I MPLEMENTATION

A. Robot and Environment

The robot ”Kurt2” (see figure 3) is an autonomous, mobile
agent. A notebook is fixed onto the robot’s chassis, running
the robot’s control software which has a direct CAN-Bus
connection to the robot.

Fig. 3. The robot KURT-2, with the controlling notebook on top, and the
infrared distance sensors.

The robot has a total of 18 infrared distance sensors with a
range from 10cm to 60cm (with a nonlinear scaling from 550
to 70).

There are three wheels on each side of the robot which
are hard connected, thus doing exactly the same; each side is
controlled by one motor. The two motors are able to move
the robot with a speed of up to0.9 m

sec
forward and backward.

Setting the motor speed of each side individually enables the
robot to not only drive straight ahead, but also to make curves,
u-turns and 360◦ rotations.

The robot control scheme is designed to work in a common
office environment, with walls, hallways, rooms, doors, tables,
chairs (non stationary, slow) and arbitrary moving obstacles
(e.g. humans, non stationary, faster). For development and
evaluation purposes we started with an artificial environment:
smaller in size, no fast moving obstacles, and no legs of chairs
that fit between the sensor beams and would thus be invisible
for the robot.

The environment that was used for most of the experiments
(see Fig. 4), is a static well controlled testing ground of
3m × 4m. Within the environment no obstacles are smaller
than the gap between the sensors. All obstacles are stationary,
or substantially slower than the robot; we can easily alter the
shape of the environment by moving one of the wooden walls
to a different location, even during a testrun, without harming

the robot behaviour as the movements of the robot do not rely
on a map, but are a consequence of the current situation.

Fig. 4. The testing environment the robot is placed.

B. Feature Space

The feature spaceF is a multi-dimensional set of sensory
values. Typically the feature space consists of recent, raw
sensory values, of derived recent values (virtual sensors)and
of values derived from past values to represent the history
while the robot is moving.

1) Feature Space: Basic Level:We have chosen a 72
dimensional feature space consisting of 2 sets with 36 values
of raw data and derived values; 36 recent values, 36 values
from the past. Each set consists of 18 values from the infrared
distance sensors (s1, . . .s18), 4 minimum and 4 maximum
sensors and 8 sensors indicating the relative orientation of
the robot with respect to nearby walls. One maximum sensor
gives the maximal sensor value from sensors with identical
heading, the minimum sensor respectively; the 4 sensors
represent the headings front, left side, right side and reverse.
The orientation sensors (e.g. osl+, osl− are calculated as the
difference between two sensors (e.g.s1, s2) with the same
heading (e.g. left): osl+ = s1 − s2 if s1 > s2 and osl+ = 0
else, and. osl− = s2 − s1 if s1 > s2 and osl− = 0 else.

Thus a total of 36 values is derived from the recent
situation, the second 36 values are the same items averaged
over 10 seconds (equal to average over the last 1000 time
steps). The basic level features space has 72 dimensions. In
contrast to our earlier publications [6] and [7] no attention
vector was necessary, and the Euclidean distance could be
taken to compare the situation vectorSǫF with the condition
Ci.

2) Feature Space: Mid Level:Since the mid level RLAs
depend on already trained low level capabilities (fixed reper-
toire of actions) the feature space is designed accordingly. For
the mid level feature space we have taken a 12 dimensional
discretised space, consisting of the last 12 differing RLA
actions. The distance measure between the situationS and
the conditionCi is the number of actions that are different.
The confidence RadiusR is set rather high to 6 (out of 12
possible).
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C. Teaching Interface

Since the training has to be performed in direct interaction
with the robot, the interface between the robot and the human
teacher was implemented as a mobile device. Thus the human
teacher has a better chance to monitor thebehaviourr on site.
A PDA is used as interface between the robot and the teacher.
The PDA communicates with the notebook installed on the
robot ”KURT2” via WLAN. With this interface the user may
send different information to the robot:

• Motor Commands
The user may send the robot direct motor commands.

• Behaviours
The user can choose the behaviour that the robot should
perform.

• Reinforcements
The user may give the robot reinforcements to help
evaluate situations or actions.

• Organising Commands
These are commands that organise learning, e.g. write the
output of the RLA structure into a file.
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Fig. 5. The systemic architecture, with the upstream and thedownstream
and a RLA based controller and the appraisal RLA system on top. The PDA
based user interface is depicted in the lower left corner.

VII. R ESULTS

To evaluate the capabilities of our approach we have chosen
a set of with varying complexity, including the examples from
our previous work [6], [7] and novel tasks that can serve
as action primitives for the mid level control. Please note,
that the present approach is not using any more an attention
focus. All described results for the low level features were
performed with a uniform 72 dimensional features space and
the Euclidean distance measure for comparingS with Ci.

A B

C Manhattan

Fig. 6. The 4 test worlds: upper left: world A,usedd for training, upper right:
test world B, lower left test world C, Manhattan World lower right.

1) Basic Level:The following tasks for the basic level have
beensuccessfullyy trained (in a simulation and with the real
robot) using phase (1), (2) and (3) of the described training
procedure.

1) Fleeing behaviour including a collision avoidance:
A behaviour that turns the robot away from an
object, followed by a very fast movement (fleeing)
including collision avoidance comparable to a type 3-b
Braitenberg vehicle [1].
Result: 67 RLAs, 261sec of teaching.

2) Wall Following Behaviour:
A classical wall followingbehaviourr, coping with
convex and concave corners and switchbacks. This wall
following behaviour has been trained within world A 6
and has beensuccessfullyy performed a wall following
in world B and C 6.
Result: 91 RLAs, 345sec of teaching.

3) Circular shaped trajectory:
A trajectory that implements a circle around an object
that is smaller than the distance between two sensors (a
wall follower would fail).
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Result: 35 RLAs, 100sec of teaching.

4) 8 shaped trajectory:
The task of performing an 8-shaped trajectory
around two obstacles 7 combines a left-handed and
a right-handed wall-following behaviour. See [7]
forcomparisonn.
Result: 122 RLAs, 370sec of teaching.

5) Straight On:
Move straight on in theManhattanshaped environment
6 without collisions, and stay in the middle of the
streets. This behaviour was dedicated to serve as a
movement primitive for the mid level behaviours.
Result: 71 RLAs

6) Turn Left:
A left turn in the Manhattan world, no collisions, stay
in the middle of the street.
Result: 43 RLAs.

7) Turn Right:
A right turn in theManhattan world, no collisions, stay
in the middle of the street.
Result: 21 RLAs.

Fig. 7. The 8-shaped movement around two obstacles.

2) Mid Level: We have chosen the following three
basic level capabilities to test the second level within the
architectureStraight On, Turn Left, Turn Right These three
behaviours have been trained in common in 1165sec and
required a total of 135 RLAs. As an alternative these three
behaviours could as well have been trained seperately, which
results in a smaller learning time. To show that it is possible
to train different RLA systems commonly we have performed
the combined training.

The task of this mid level behaviour was to perform anarbi-
traryy (but fixed) trajectory through theManhattan World. A
total of 197 Mid Level RLA were created to learn the arbitrary
trajectory in 797 seconds.

VIII. C ONCLUSIONS

The presented approach provides a method to teach a
robot using different training paradigms. From distinct teacher
commands (creating new RLAs) via correcting advises of the
teacher to a reinforcement based improvement, and further us-
ing a trained RLA based internal critic finally reaching a robot
that is capable to improve its capabilities on its own. Usingthe
artificial immune based approach we are able to go through
these different training paradigms with one approach for the
control structure. Even a high dimensional feature space (>70
dimensions) showed to be rather an advantage for learning
than beeing a problem. As improvement of previous work,
the attention focus could be omitted, treating all dimensions
of the feature space equally. This is a simplification of the
training procedure.

Within this work, it was demonstrated that the basic level
capabilities could be implemented by training RLA systems,
and that they can be used subsequently by the mid level
RLA system as action repertoire. Thus the first step into a
hierarchical learning procedure is shown to be working.

The results are promising and the authors are convinced that
the presented method can be applied to a wider field than robot
control alone. The final goal to get rid of the nastylow-level
robot programming has come one step further into reach.

We do no longer programme our robot:
We teach the tasks by showing the actions

and judging the performed behaviour.
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