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Abstract— In this paper we present methods capable of per-
forming ball recognition and tracking on a RoboCup Midsize
robot in three-dimensions in real-time. The system uses infor-
mation from a perspective as well as a catadioptric camera to
yield stereoscopic depth. Robustness, accuracy and efficiency are
evaluated.

Index Terms— Vision, Multi-Robot Systems, Sensor Fusion,
Catadioptric Cameras

I. INTRODUCTION

In this paper we give insight into central parts of the com-
puter vision system developed for our championship winning
robot soccer team, the Brainstormers Tribots. Since 2003 the
Brainstormers Tribots actively participate in the Middle-Size
League of the RoboCup (see http://www.robocup.org), where
two teams of six fully autonomous robots play soccer matches
on a field of 18x12m. The Brainstormers Tribots won the
annual inofficial European Championships four times in a row
and became world champion during the RoboCup 2006 held
in Bremen, Germany.

Besides very reliable hardware and precise self-localization,
the very robust ball detection and accurate prediction of its
movement have always been among the key strengths of the
Tribots. During games, this allowed the Tribots to intercept
freely rolling balls earlier than most of the opponents, to
dribble the ball better than any other team and to intercept op-
posing attackers advancing the ball very aggressively. All these
game deciding abbilities heavily depend on a powerful com-
puter vision subsystem. Besides coping with the uncontrolled
natural lighting conditions present in the Middle Size League
since late 20051 and the need for very high reliability and
robustness, the challenge in the development of the computer
vision system was the need for very capable, yet ressource-
saving algorithms, that allow real real-time processing (30Hz,
upper bound of 33ms per cycle) of images, world modelling,
actuator control and decision making— all this despite the
very limited computation power of the on-board computers of
the soccer robots.

1Actually the RoboCup has been often criticized for simplifying the
problem too much by placing unnatural demands on the environment and
especially the lighting conditions in the early years. Therefore, in 2005 the TC
of the Middle Size League decided to remove all constraints on uniformity and
minimal and maximal brightness of the lighting from its rules; only a minimal
brightness of at least 300 lux is necessary. During the Robocup 2006, games
were held inside a hall right in front of a 100m2 window allowing direct
sunlight to enter. The Brainstormers Tribots recently even have demonstrated
their vision and self localization to be working in free air with direct exposure
to sunlight and in the presence of clouds (a video could be found here:
http://www.ni.uos.de/index.php?id=525).

But the really unique feature of the hybrid vision system
described in this paper is the utilization of two different
camera types in order to realize— for the first time on a
soccer robot participating in official competitions— real stereo
vision for tracking and predicting the position of the ball in
three dimensions. In recent years, catadioptric camera systems
(often named omnidirectional cameras) have become the gold
standard for soccer robots in the Middle Size League since
they provide a 360◦ field of view without needing a pan-
tilt assembly or several cameras. Ball recognition, opponent
tracking and especially self-localization algorithms heavily
rely on the possibility to observe the complete surroundings of
the robot in each frame. While fully maintaining these benefits
our system adds the additional capability of three-dimensional
ball tracking in a region of interest by integrating an additional
perspective camera.

The future importance of this new 3D ball tracking feature
could not be underestimated. As long as no team was able to
lift the ball, the limitation of the standard system using only a
single sensor and therefore modelling objects and movements
only in two dimensions was not a real problem. But nowadays
all successfull teams are able to do high kicks: In the 2006
RoboCup we received a total of 4 goals (while scoring about
80). All were either lob shots or bouncing balls that the
goalie robot misinterpreted assuming the ball rolling flat on
the ground.

In the rest of this paper we discuss all issues that had
to be addressed in order to realize real-time capable and
robust three-dimensional ball tracking on our robots using a
hybrid camera system. We were the first to introduce real-time
stereo vision into the Middle-Size league during the Technical
Challenge of RoboCup 2006 (first place of 28 submissions)
and during real games at the German Open 2007. Furthermore,
to our knowledge this is the first paper discussing a stereo
vision system fusing information of an omnicamera and a
perspective camera. Although this system has been developed
and optimized for the utilization in the RoboCup environment,
we believe it might be of interest for other application areas
like e.g. home or office robotics as well. The omnidirectional
camera facilitates self-localization, mapping and path planning
in any environment, whereas the perspective camera provides
three-dimensional object positions for e.g. grasping objects
with a robot arm.

Related Work
Stereo vision systems based on two perspective cameras

relying on epipolar geometry are well established, e.g. [13].
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While they provide superior precision compared to the pre-
sented system and can be acquired commercially, these sys-
tems suffer from the limited field of view which originally
has led to the use of omnidirectional cameras. The usage of
more than two cameras, e.g. a stereo camera system and an
omnicamera, on a mobile platform can be problematic due to
the bandwidth limits of current bus interface systems.

In our hybrid approach, we employ an omnicamera and a
perspective camera that both need to be calibrated beforehand
to recover metric information. Another possibility would be
to use structure from motion (SfM) [4] in order to relax this
prerequisite or to extract 3D information with a single camera.
The major drawback of SfM is its current inability to cope
with dynamic scenes as RoboCup where all robots might be
in motion and it therefore becomes non-trivial to distinguish
ego-motion from a changing scene.

Another possibility to recover the 3D position of the ball
is by its observed size, which is known beforehand, using
one camera only. However, the ball covers only a few pixels
in the omnicamera when viewed at rather short distances of
more than 3m. Therefore, the main advantage, using only one
omnicamera, cannot be realized. Even utilizing a perspective
camera, at least the stark highlights and shadows that are
observed have to be modeled in order to gain adequate area
estimates. Occlusions and motion blur are highly problematic,
too. The center coordinate of colored regions yields a more
stable position under these conditions.

Finally, it has also been proposed to use two omnicameras
to realize stereo vision[12]. While being very appealing, in
our opinion a robust assembly is hard to realize mechanically
on a Middle-Size robot.

Considering the pros and cons, we feel that a hybrid
system presently might be the best solution for RoboCup
providing a fair compromise between computational demands,
practicability and precision.

Overview
Whereas it was partly possible to rely on existing work,

several algorithms had to be newly developed or adapted in
order to fit the strict demands. Special attention has been put
on the robustness, on low computational demands as well
as on the smooth integration of each submodule into the
hybrid vision system. The system consists of the following
submodules:

1) Integrating and placing the cameras is briefly discussed
in section II.

2) Calibrating (establishing a mapping between world coor-
dinates and image coordinates) the perspective camera
is done using a well established model based method
proposed by [11] (sec. III-A)

3) Several model-based methods for calibrating catadiop-
tric cameras have been published as well [1]. But due
to some impracticable restrictions these models pose
on the camera assembly, we developed a new model-
free automatic calibration method in order to increase
precision (sec. III-B).

4) For the submodule detecting the ball in the images of
each camera we had to find a rather clever solution,

Fig. 1. Left: The position of the two cameras on the soccer robot. Right: The
processed images of the two cameras showing a ball at a distance of about
300cm.

since it is not even feasible to read out every pixel of the
images only once given the available computing power.
Nevertheless, since ball detection is that important in
RoboCup, we had to come up with a very reliable and
robust solution we discuss in section IV-A.

5) Triangulation of the 3D-position of the ball given the
detected ball regions and the camera models is done
using basic geometry (sec. IV-B).

6) Filtering and predicting the ball movement is solved by
extending an approved method for 2D-ball tracking to
the 3D case (sec. IV-C).

II. CAMERA INTEGRATION

The robot is conforming the rules of the RoboCup Middle-
Size league and has a height of about 80cm. To give the best
viewing angle the catadioptric camera has been placed at the
topmost position allowed by the rules. The catadioptric camera
consists of an upward facing progressive scan Firewire camera
pointing at a hyperbolic mirror. Preferably, the perspecitve
camera should be placed in such a way that the optics could
not be hit by the ball, too. Therefore we have chosen to
place the camera inside the robots chasis. For the distance
between perspective camera and omnicamera there is a tradeof:
obviously, more distance between the cameras would further
reduce the error in the 3D position estimates due to noisy
ball region detection. But a lower position would also further
decrease the available space for other equipment and allow
other robots to occlude the ball more easily. Considering this,
we have chosen an intermediate position that still allows easy
access to other important components of the robot (see fig. 1).

The image integration of both cameras should be synchro-
nized to avoid bad position estimates due to time differences
in the image acquisition. This can be achieved easily by using
Firewire digital cameras of the same manufacturer relying
on the build-in auto-synchronizing feature or by manually
triggering the image integration process.

Both cameras capture frames at 30 Hz using the 4:2:2
color subsampling scheme. Using the Format7 specified by
the DCAM standard, we set up a region of interest for the
perspective camera as big as possible while not exceeding the
bandwidth of the IEEE1394a bus.
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III. CALIBRATION

To obtain metric information from the camera images and
to be able to combine the information from both cameras,
it is necessary to calibrate the cameras onto the same world
coordinate system. Due to the different nature of the two
camera setups, we employ different techniques for each setup.
The world coordinate system is defined in a robocentric way
with the positive y-axis pointing to the front of the robot, the
x-axis pointing to the right and the z-axis pointing upwards.

A. Perspective Camera

Calibrating perspective cameras is well established. We use
the comfortable method proposed by Zhang [11]. The calibra-
tion process calculates a mapping between image coordinates
and world coordinates given a set of points with manually
determined image and world coordinates. The calibration
assumes a pinhole camera model and relates a model point
M = [X, Y, Z, 1]T and its corresponding image projection
m = [u, v, 1]T . M is specified in homogeneous world coordi-
nates and m is specified in homogeneous image coordinates.
Both coordinates are related up to a scale factor by the
transformation:

m ∝ A[ R t ]M with A =

 α c u0

0 β v0

0 0 1

 (1)

The matrix A is called the intrinsic matrix. The principal
point of the camera is specified by (u0, v0), α and β are
scale factors in the u and v axes and c represents the skew
between these axes. [ R t ] are called extrinsic parameters.
R represents the rotation and t the translation that relate the
world coordinate system to the camera coordinate system.
Since the used perspective camera exhibits lens distortion,
especially due to the use of a wide-angle lens, it is necessary
to model radial distortion, as well. This is done using only the
first two terms.

Using the inverse of this model, image coordinates can be
mapped to lines in the real world. The line is formed by the
position of the pixel on the image plane after undistorsion and
the camera’s focal point, with the exact distance on the line
being undefined.

The actual calibration procedure is done by recording a set
of images from which correspondence points are determined.
Each of these points relates a world coordinate M to its image
projection m. Using the calibration procedure described in
[11], the points in world coordinates have to be coplanar,
which makes it easier to find correspondences compared to
older calibration techniques such as [10]. The algorithm further
requires the images to be taken from different orientations with
regard to the correspondence points. At least three images from
different orientations need to be acquired in order to derive a
unique solution to the problem.

B. Omnidirectional Camera

Although model-based self-calibration methods for cata-
dioptric camera assemblies have recently been described in
literature, e.g. [6, 8], they turn out to be not applicable in this

framework since they share at least the following assumptions:
The principal axis of the mirror has to be perfectly aligned
with the camera axis and the shape of the mirror has to be
symmetric in every direction in order to reduce the calibration
problem to a circular distortion. Already a small deviation
of the mirror’s principal axis of less than a millimeter (or
small skew) notably impairs the precision of the calibration.
However, the device holding the mirror above the camera is
assembled from several rather filigree (minimize occlusion)
custom made parts. Considering the shocks and stress this
device is exposed to during transports of the robots and during
frequent crashes, obviously these assumptions are violated
irremediably and at least hard to meet when (re-)assembling
outside a lab. Therefore, we use a model-free approach for
camera calibration that does not depend on such constraints in
exchange for needing a lot more correspondence points during
the calibration.

The idea for our model-free calibration is based on the
property of omnidirectional cameras to preserve the angle at
which an object is seen in the image. Hence, if we work with
polar coordinates, both in the world coordinates and image
coordinates, we immediately get the angle at which an object
is mapped into the camera image. Only the mapping between
distances in world coordinates and distances in image coordi-
nates (or, for short, distance mapping) must be calibrated.

Due to the aforementioned inaccuracies in the camera
mounting, the distance mapping cannot be reduced to a one
dimensional function but must be chosen individually for
each direction. We use piecewise linear functions in polar
coordinates to model these mappings. For each of 45 directions
(covering 8 degrees each), 12 support vectors are determined
in an automatic calibration process, which then define the
distance mapping.

The calibration process is based on a 8m long calibration
carpet which is rolled out on the floor and that is built of
white, blue and red patches. The robot is placed at one end
of the carpet so that the edges of the colored patches are at
predefined distances, see Fig. 2 (top left). To calibrate the
distance mapping, the robot automatically extracts the colored
patches in the image and records the distance of the edges
to the image center. Furthermore, the robot slowly performs
mulitple revolutions on the spot while calibrating to obtain
observations from different directions. In this manner, multiple
samples are acquired for each direction and edge yielding a
total of over 1000 samples equably spread over the mirror.

After recording the edges, the 12 support vectors of the
distance mapping for each direction are determined from the
acquired correspondence points along that direction fig. 2 (top
right). Since the changes from white to blue and vice versa are
not unique and there may occur a few errors in the sampling
of the correspondence points, we apply the k-means clustering
algorithm (12 cluster centers) to distinguish the samples of
different edges. Afterwards cluster centers form the support
vectors. Finally, a smoothing approach based on median and
moving average filters is used to guarantee that support vectors
of neighboring directions referring to the same edge are at
similar positions.

A record of acquired edges and their interpolation is given
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Fig. 2. Top left: camera image captured during calibration. The calibration
carpet is built from alternating white and blue patches. Top right: The diagram
shows the result of calibration. The y-axis refers to the distance from the image
center (in pixel) at which an edge between neighboring patches has been seen
while the x-axis refers to the direction in which it has been seen. Each cross
refers to one observed edge. The lines represent the support vectors defining
the distance mapping found by our model free approach. Bottom: area of
the top right diagram showing the support vectors for the distances of 3m
and 4m. The dashed horizontal lines represent hypothetical calibration results
employing the one direction assumption (mirror symmetry) with the resulting
errors

in Fig. 2 (bottom). The directions in which no samples were
acquired are occluded by the camera mounting. The wavy
structure of image distances for a particular calibration patch
is primarily due to imprecisions in the mounting between the
camera and the mirror. Imprecisions caused by the perpendic-
ularly mounted camera setup and the ground plane also add
to the asymmetry. This illustrates the problem model-based
calibration methods would create. By assuming symmetry,
they would assume this distance to be fixed for all directions,
i.e. a straight horizontal line in this graph. These lines are
shown dashed in the graph and represent a possible result of a
fitted model-based calibration method. As can be seen, while
at a direction of 175◦, both calibrations overlap, the error of
the model-based calibration at 250◦ is as large as to mistake
the fifth patch with the fourth patch, which constitutes an error
of 1m.

IV. BALL DETECTION

First, the position of the ball is detected in both images
separately. The mapping established during the calibration
procedure allows the construction of a 3D-line from the
camera through the center of the ball as detected in this
camera’s image. The particular position of the center on the
line is then given by intersecting the two lines constructed for
each camera.

A. Locating the Ball in the Images

We start with a description of how the ball is detected and
tracked in the images of the omnidirectional camera. Due to
efficiency reasons, we still use a color-based segmentation
algorithm to detect the ball in the image. But instead of
segmenting the whole image (computational demands too
high), we search for reddish pixels that might be interesting
only along a set of radial scan lines extending from the image

center to the outer region. We use the same scanlines to
detect all other objects of interest (robots, lines, goals) as well.
To further speed up this time consuming processing we use
lookup tables for the classification of color values.

The detected red pixels are used to seed a contour tracing
algorithm that generates chaincodes [5] for the connected
region each pixel is a part of. Chaincodes allow to very
efficiently calculate region descriptors like e.g. center of
gravity and roundness. If more than one red region (ball)
has been detected, some heuristics are used to filter out the
most likely region: a) we check for a minimal roundness, b)
regions definitely inside the playing field are favored c) if
necessary, we use the expected position of the ball (see sec.
IV-B) to select the most likely region. The expected position
(3D) could be mapped back to image coordinates using the
inverse mapping (world to image coordinates) established
during calibration.

The idea behind this heuristic for preventing the robots to
gather around other reddish objects close to the game field
is the following: If the ball is on the ground, it is possible
to decide whether or not it is inside the playing field using
only a single camera. Since the rules guarantee that there is
always only one single red region (ball) inside the playing
field, we can reinitialize safely our tracking with this region.
If the ball leaves the ground, the decision whether or not it
is inside the field might not be possible considering only one
camera’s image. In this case, more than one single region may
have to be considered. From these regions we select the region
closest to our prediction.

Once the ball has been detected in a frame, the estimate of
the ball movement described in section IV-B could be used
to find the ball in subsequent frames. This is realized using
a Monte Carlo method. Some normal distributed pixels near
the predicted position (predicted world coordinates mapped
back to image coordinates using the models established during
calibration) are tested for being red and— if positive— are
used as additional seeds for the chaincoding. This attention
shift and allocation of further computing power to interesting
regions effectively prevents loosing a once detected ball in
subsequent frames without needing to process every single
pixel of the image.

B. 3D Position Estimation

Once the two ball regions are found, we can use the
calibrated model of the cameras to determine two lines on
which the ball is assumed to be. The line lP determined
for the perspective camera is defined— as stated above—
by the focal point of the camera fP and the vector rP that
connects the focal point and the point of the undistorted
pixel on the image plane. In a similar way, we can define
a line lO for the omnidirectional camera assuming a single
focal point within the mirror fO and the vector rO that
connects fO with the point on the ground plane which we
get from the calibrated image-to-world mapping, see section
III-B. Although the assumption of a single focal point only
holds for special camera assemblies, the error introduced with
this simplification turns out to be small.
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Once having determined the two lines lP and lO the center
of the individual ball regions must be on, we can determine
the 3D position of the ball by calculating the intersection of
the lines. However, in practice both lines are skewed due to
noise and imprecision in image processing and calibration.
Therefore, we use the point of minimal distance cS to both
lines as approximation to the actual ball position. Using
standard methods from geometry we receive the following
formula that has been implemented on the robots:

cS =
1
2

(
fP + fO +

〈rP , rO〉〈rO,d〉 − 〈rO, rO〉〈rP ,d〉
〈rP , rP 〉〈rO, rO〉 − 〈rO, rP 〉2

rP

+
〈rP , rP 〉〈rO,d〉 − 〈rP , rO〉〈rP ,d〉
〈rP , rP 〉〈rO, rO〉 − 〈rO, rP 〉2

rO

)
(2)

where d = fP − fO and 〈·, ·〉 denotes the dot product.

C. Ball Tracking

The camera system provides a sequence of ball positions
at exposure time. To be able to interact with the ball and
to bridge the time gap between perception and actuation by
prediction [2] we need information on the dynamics of the
ball, i.e. estimates of the ball velocity and its direction of
movement.

Here, we basically rely on an approved method for tracking
and predicting the movement of the ball [7]. Since the original
method did only utilize a two dimensional motion model, we
needed to extend it to the third dimension. As long as the ball
does not bounce on a surface, the gravity does only affect
the new z-component of the ball movement and does not
affect the movement component perpendicular to the z-axis
(x component and y component). Thus, the extension of the
existing ball filter could be done independently of the existing
movement model. Neglecting air drag, we added new rules for
the three possible movements characterized by its height z(t)
and its vertical velocity v(t):
• rolling on the ground: z(t) = 0
• flying on a parabola trajectory: z(t) = z0 + v0(t− t0)−

1
2a(t − t0)2

• bouncing at point in time t: limτ→t+0 v(τ) =
−b limτ→t−0 v(τ)

where t0 is a reference point in time, v0 the linear vertical
velocity at t0 and b is a factor that controls the loss of en-
ergy during bouncing, chosen from experiments. The constant
factor a is the acceleration due to gravity. The parameters z0

and v0 and which one of the three movement models should
currently be used for calculating predictions is estimated from
the n last measurements of the ball position. For more details
we would like to refer the reader to [7].

V. EXPERIMENTS

The presented setup was tested and compared to ground
truth information in several experiments to evaluate its accu-
racy. The ground truth information was acquired by a three-
dimensional laser scanner[9]. The scanner system consists of
a 2D laser scanner that is mounted on a servo in order to
sequentially acquire laser scans by tilting the scanner followed

lP

cS

lO cLASER

Fig. 3. Ground truth 3D laser data with superimposed camera-processed
data. The lines shown represent lO and lP while the spheres represent the
camera-detected ball as well as the ball within the laser scan.
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by composing the individual scans into one three dimensional
scan using ICP[3]. The scanner was calibrated to the reference
coordinate system of the soccer field and scanned one 3D scan
every time a camera measurement was performed. In each
scan, a spherical region of interest was manually selected to
represent the ball and serves as ground truth for the camera
information. Figure 3 shows a laser scan superimposed by
camera information.

A series of experiments has been conducted with a sta-
tionary ball of 11cm radius. The distance between robot and
ball as well as the ball height was varied. The ball was
presented on the ground (z = 11cm) and in two lifted positions
(z = 21cm and z = 41cm). The distances varied between
0.5m and 5.5m in intervals of 0.5m. No constraints about the
ground plane were modeled that would artificially improve
the error rate for the z = 11cm case. Figure 4 shows the
error between the ground truth and the estimated ball position
for the different heights and distances. The 2D z = 41cm
case represents the error of position estimates if we would
only use the omnidirectional camera and assume the ball to
be on the ground plane. As can be seen from the figure,
this assumption yields very large errors, even for relatively
small distances. This shortcoming, which has prevented any
reasonable predictions for above-ground balls up to now, has
been greatly reduced with the stereo vision approach.

To measure the performance of the stereo vision approach
in a dynamic situation, we examined the case of a ball that is
being vertically bounced at a distance of 2m from the robot.
The limited temporal resolution of the scanner did not allow to
use it in this experiment so that we are left with the recognized
positions and estimated velocities of the vision system. Figure
5 (left) shows the observed height of the ball over time and the
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Fig. 5. Left: trajectory of a bouncing ball (red), estimated vertical velocity
over time (blue), and true vertical velocity exhibiting typical saw-tooth pattern
(green). Right: usage of the position and velocity estimates to initialize the
new predictive model for the z-movement of the ball. The dotted blue line
shows the movement of the ball as predicted into the future from the point
in time 2.4s using the then available measurements.

estimated vertical ball velocities that are the important values
for initializing the predictive models. The limited scope of the
camera did not allow to recognize the ball above a height of
58cm, hence these values are absent near the top of the first
parabola. The graph of the ball height shows the characteristic
form of consecutive parabolas while the graph of velocity
estimates takes the form of a saw-tooth diagram (as expected)
with decreasing amplitudes.

In the vision system the position and velocity estimates
are used to initialize the predictive motion models. Figure 5
(right) exemplary shows the movement as predicted at 2.4s
using the then current position and velocity estimates. Over
the relatively long period of about 2.5 seconds into the future
(typically only time spans of about 200ms are extrapolated
in order to bridge the gap between image acquisition and
first physical effects of executed commands) the model gives
reasonable predictions for the amplitudes of the parabolas as
well as for the points in time where the ball bounces on the
ground, slightly overestimating the initial velocity (therefore
the higher amplitudes) and missing the real bouncing events
by less than 0.15s.

The experiments were performed using the onboard com-
puter of the robot, which is an off-the-shelf subnotebook with
a 1 GHz Intel Centrino CPU. The average processing time
to detect the ball in the omnicamera was 4.9ms including
the time for checking the scan lines (4.6ms), calculating the
contour descriptions of the red regions (0.3ms) and selecting
the most probable region. This time already includes the time
needed to detect seeding pixels of the other objects of interest
(goal, obstacle, etc.). The total processing of the image of
the omnicamera including line, goal and obstacle detection
took 5.8ms. The processing of the image from the perspective
camera is slightly faster since presently we only look for
potential balls and scan lines can be placed more efficiently.
Combined with the image acquisition time, this yields a total
vision time of less than 12ms.

VI. CONCLUSION

The hybrid vision system presented in this paper is driven by
the idea to combine the advantages of omnidirectional cameras
with their large visual field with the advantages of stereoscopic
3D vision. The ability to recognize the ball position in three
dimensions became necessary as many teams in the RoboCup
Middle-Size League lift the ball.

To achieve this goal several algorithms were developed or
adapted to fit the different camera types and the RoboCup
framework: precise camera calibration for the perspective
camera was adapted from a standard approach whereas a new
algorithm had to be developed for the omnidirectional camera.
Furthermore, a computationally feasible method to find the
correct position of the ball in the two images of both cameras,
an approach to determine the 3D ball position and a dynamic
model of ball movement that incorporates the vertical ball
velocity were newly developed.

Due to the limited available computational power of the
onboard computers we proposed very efficient algorithms to
analyze the camera images. The time needed to analyze the
two camera images and estimate the ball position and velocity
was measured to be less than 10ms which allows to work with
the maximal frame rate of 30Hz in real-time.

Experiments provide that the accuracy of position estimates
is within acceptable bounds, with an error of less than 50cm
most of the time, even for balls at a distance of 5m. Compared
to single camera systems, the error is reduced significantly,
thus enabling the robots to react on lifted balls and to show
senseful behavior, e.g. in defense strategies and in intercepting
the ball. Shortcomings of the currently used system are the
limited height and limited distance up to which the ball can be
recognized. This problem can be easily addressed by changing
the placement of the camera.
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