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Abstract—We present a force field based approach for simul- so they conjecture that is invertible if the constraint-graph
taneous alignment of multiple laser scans in robot mapping. s fully connected and the errors of the observations belrave

It avoids sensitive behavior to wrong data associations and 5 g5yssian/normal way. [10] extends the same technique for
sparse sensing, which are the main challenges e.g. in mulbloot 3D scans

mapping under the constraints given in autonomous search ah ] o )
rescue robotics. The presented algorithm solves the alignemt [30] presents an approximate optimization of non-linear
problem utilizing a gradient descent approach motivated by constraints and demonstrate that their approach of approx-
physics, but exchanges laws of physics with constraints @m jmating the optimization process in non-linear state space
by human perception. Experiments on different real world dda ;0|45 superior results compared to finding exact optima by
sets show the successful application of the algorithm. . . . .
approximating a non-linear state space (SLAM) to a linear

Index Terms— Scan alignment, force fields, SLAM state space.
Another strategy of attacking the problem is to treat the
. INTRODUCTION problem of SLAM from a perspective of aligning scanssi-

The problem of alianinan scans has been treated amuItaneoustThe algorithms exploiting this perspective build

ne p 'gningn . L rc*m image registration techniques, the most famous being
estlmat_mg Sets of_posgs [26]. Slnc_e estimating the set_s frative Closest Point (ICP) [5, 12] and it's numerous aats
poses involves estimating the consistency of the assdmalg improve speed and converge basins [33] and [25, 8]. Such

observations (maps), this joint estimation is called Staul : "

LV ; o . algorithms are not very sensitive to error models of the @ens
neous Localization and Mapping. The conditional mdeperg\-S thev do not exlicitiy depend on the error models. Basical
dence between these two estimations is e.g. the key for R y plcttly dep - Bay!

an- . . . :
Blackwellization (factoring the posterior of maps) of peld :Eéﬁﬁzesicgnégﬁ?jigg ;Zi;ig:;;ﬁ:‘:;ogg it:;]r; f)?/a:;?rtnglz
filters for SLAM [27].

There have been several algorithms for the estimatigome function defined on transformation space. The teckriqu
[30, 17, 18, 34]. The underl ir? framework for all suc vglry in defining the optimization functions that range from
techn' 'es s 0 (’) timize a coﬁstga'nt— raoh. in which sod eing error metrics like "sum of least square distances” to
lques 1 ptimiz int-graph, in whic uality metrics like "image distance” as in [9] or probastic
are features, poses and edges are constraints built usingva . . S : .
metrics [23]. Their optimization process itself can be geat

observations and measurements like odometry, Scan'mgtChdescent or hill climbing or using genetic programming st
of range scans. These techniques differ in

~as in [31] or using maximum a posteriori (MAP) [28]. All

« how they represent graphs - e.g. [17] uses a sophisticalidnese techniques have one major limitation, which is they
data structure called Tree-map. [34] represents using §sarch inpair-wise transformation space. Though in some
verse covariance matrix called information matrix insteaghriants of ICP the error from all pair-wise transformatias
of covariance matrix. The information matrbaturally  spread across all transformations to simultaneously aign
happens to be sparse for the SLAM posterior, which givegans, the procedure can be highly sensitive to outlierk [32
them computational advantages. Fig. 1 for example shows the difference between the results

« how they build constraints - e.g. [26] uses linearizegs gjigning a hypothetical set of scans using classical ICP
constraints obtained from scan-matching and odometgng our approach.

[30] works with non-linear constraints.
« how they optimize the graphs - e.g. [30] uses stochastic
gradient descent for approximate optima, borrowing the

ideas from learning theory. While [26] solves for exact Though we also adapted the perspective of alignirsgans,
optima using brute-force, as noted earlier their graph usgg differ from any other typical registration algorithm in
linear approximation of the non-linear constraints thahat we do not search explicitly in transformation space for
occur in SLAM. [18] use Gauss-Seidel relaxation agaigptimization. We embed the transformations (poses of the
for approximate optima. scans) into a higher dimensional space of global configumati
All these approaches have performed well in many practioafl the scans and search for poses. As a stable configuration
cases but they have one drawback that is they are sensitivetolves the optimal set of transformations of scans is re@ch
behavior of error models of sensors because of several @assufrhis search in high dimensional space at first sight seenys ver
tions and approximations which might not hold with sparssomplicated, demanding computation of a high dimensional
sensing. For e.g. [26] linearizes constraints by lineagziose- gradient; but fortunately using potential field simulatifor
relations, solving a linear equation of the formX = B to various computer vision tasks like contour detection, sagm
estimateX, the set of poses. This requires thhts invertible, tation, registration has been empirically successful £28,37]

II. MOTIVATION



following chapters will motivate the fithess measure as well
as the gradient technique.

Conservation of energyThe law of conservation of energy
is one of the most important results in Physics [16, 29]. Free
moving bodies in a conservative force field, which forms a
closed system, do not result in energy gain or loss. Bodies
are said to move freely if they move under the influence of
forces inside the system. The kinetic energy gained by the
bodies under these forces is equivalent to the loss of patent
energy of the system. This indicates that if we let bodiesenov
freely in a conservative force field they always try to attain
Fig. 1. The top row shows 3 steps of the alignmenBddcans (each scan a Conﬁ,guratlon V\_”th _mmlmal potential. This charactedssf .
consists of a single comner only) by classical ICP, the ottow shows the dynamics of bodies is the key for the movements of scans in
results of the proposed approach. The alignment progresbeaseen from our approach. We define the fithess measure of a global map
ISeCf;rt](;nght in both cases. The square boxes show the robsgsof the the by the potential energy of the system defining an underlying

gradient field. FFS is an iterative simulation, and since eget

the kinetic energy in the system to zero after each iteration

and [2]. Since mapping is closely related to registratioM® minimize the total energy, i.e. the potential energy.

the approaches whose motivations are closely related to ouf he following section proceeds to define the potential and
approach are [7, 2, 14]. In [14] they align range scans 59rce field. It will explain the potential update and influenc
moving them simultaneously. The movements are not judt Perceptual properties of the scans as they move.

based on the minimizing error of transformation computed The simulation of dynamics of bodies is explained in IlI-D.
using correspondences but on the simulated fields generated

by imaginary springs attached to the corresponding poini. Potential& force field

Our technique differs from [14] in that the force field is For simplicity and without loss of generality, we define the
generated not just by closest point correspondences g Usiotential and gradient field of our system first assuming & uni
perceptual principles and gaussian fields similar to [1jc& mass for points on the rigid bodies. The poter®aat a point

our force field (Eq. (3)) is radial, it is conservative and @@n ;, — (x Y) on a rigid body in a global configuration of
the simulatedree movements of scans with weights definedcans at time is defined as

using our perceptual principles will be towards minimizing v e

potential energy (Eg. (1)). Thus our main contribution is Pi(p1) :/ 2% dz (1)

the novel design of force fields for simultaneous multi-scan s 04V/27

alignment. [7] also performs search 3m dimensional space. wherer is the Euclidean distance gf; to all points in the

For each configuration they compute energy as the sumaainfiguration,r = {\/(z — X)?+ (y — Y)?|(z,y) € P},

the Normal Distribution Transforms (NDT) [6] of all the P=set of all points.o; is a parameter that decreases over

scans in the configuration and update the configuration usitige, its significance is explained in section Ill-bB; does

Newton’s optimization algorithm that involves the first andhot violate any assumptions needed for free moving bodies

second derivatives of the energy. Their approach is vesetyo to converge towards minima. Motivation for choosing this

related to ours but does not use perceptual features amtl rigotential, and not the hyperboli¢r?> model from physics, is

body dynamics and hence in principle can be more sensiti@eavoid the over representation of close points with infagen

to outliers. towards infinity when the distance goes towards zero. The
total potential€ of a given configuratiom®B; is the sum of
potentials at all points. It is given as

E(RBy) = Z Pu(pi) (2)
pi€RB:
Rigid bodies:Each scan is a set of poins,y) (obtained The negative gradient of this potential, gives us the forelel fi

from range data) at a pode,y,6). The pose can be either(F;) induced byp, = (X,Y) at a pointp, = (z,y) € P as
obtained by odometry or odometry independent by relative

Ill. FORCEFIELD SIMULATION FFS

A. Rigid bodies& conservation of energy

pose estimation using pre-alignment techniques desciibed Fi(pr,p2) ==V P

[1]. The set of sample points and the pose are termed 'rigid op 1 6;7? Xz

body’, since the relative positions of the points in the &ng oz oV2m T 1 ;Tj ~

scan do not change. These rigid bodies constitute the @lysic — or | . = at\/ﬂe it (3)
system on our approach. A global configuration or global map Ty 1 %7 Y-y

of n rigid bodies(rby, rbs, ..., rb,) at timet is represented as orV2m "

RB;. FFS tries to find the global map which is optimal wittwhereu = ﬁ. The force field depends on the distance, it

respect to an underlying fithess measure. It uses an iterafiv radial and hence a gradient field. The force acting on these
gradient approach with a decreasing step width control. Thedies is the negative gradient of the potential, we theeefo



can exploit the free movement of rigid bodies (as explaine

in section I1I-A) to minimize the potential. The key step @& t "
define the masses of data points, so that the rigid bodies mc

in a perceptually consistent manner, see section IlI-C).

C. Perceptual Masses, the Correspondence between d "
points

As described in the previos section, the basic idea of OME. 2. FFS on four rigid bodies. The significant forces agtamong the
registration method is to use a Gaussian field to defineb@lies are shown in double-headed red arrows. Left thaliitinfiguration.
strength of correspondence between data points. In thigeha Middle after two iterations. Right stable configuration twihinimum poten-
we extend the measure to incorporate both spatial proximf’t"i‘/"
and visual similarity of two points.

To define the corresponencg, is extended by two factors, mayement, as defined by the constraints of rigid body dynam-
the masses of two points;, m2, as well as their parallelity g
cos(£(p1,p2))- The details are out of this paper’s scope, we will give

the basic idea. For each rigid body;, the translational and
Fi(p1,p2) = Fi(p1,p2)mimacos(L(p1,p2))  (4) rotational acceleration has to be determined. The traoskit

with m; being the mass assigned fo, and the angle acceleratiorur(rb;) of a rigid rb; is defined by:

Z(p1, p2) being the angle between tldirections of pointg;, S ers, FE(D)

p2. The direction of a point is the direction of the underlying ar(rb;) = =E—

line segment. The strength of correspondence is weighted by ZPG“’I‘ Mt

the mass of each data point and depends on the angle betweetith m,=mass of poinp.

point directions, i.e. it is O for orthogonal directions, arf  The rotational accelerationy is computed by torque and

parallel directions. moment of inertia. Torque and inertia play the role of force
A major difference to the pure physics simulation is thaind mass respectively, but take into account the distance to

the mass values assigned to the data points are not assuthedotational centety.

to be constant. The mags, for a pointp is used to compute

the force, yet it can be reassigned a different value for the

computation of movement of the scan (we are not modeling inertia = Z mil|pi — crll®
physics but perception, hence freedom from Newton’s laws is pETD;

given). Steering the mass enables the algorithm to reatgrbet torque = Z lpi — crll x F(p)
to perceptual properties: there is not perceptual reasoarfo pErb;

'important point’, e.g. a corner point, assigned a high mass

for force computation, to be less mobile than other points “# is defined as
during movement computation (caused by its high mass). an — torque
This observation suggests using different masses duriag th R~ Gnertia

computation of forces than during the computation of the The rotational centery is either defined as the robot's

movement. The current FFS system has built in differegbsition, or by the center of mass. Experiments show, that in

techniques to compute the point masses to model differgRg first iteration steps it is useful to set the rotationalteeto

mid level perceptual processes, e.g. regions of interestiet  the center of mass, while in later steps the robot’s posison

detection. In the experiments the masses were steered by ppieferable. The first choice enables easier rotation, thensk

density. is modeling the actual scan setting more precisely. Hemheg, t
The total force acting on each single point of a scan is ¢loser the global map is to the solution, the more preferable

is the robot’s position as rotational center.

F(pi) = Z (F¥ (pis pj)) With ar andag the transformatiort, = (z,yx,0x) for
pi€P\Pi rigid body rby, is defined by:
The effect of forces on rigid bodies can be seen in Fig. 2. 1
(Tk, Yr) = §GTAt2 )
. 1
D. Dynamics 0 = 5aRAt2 4)

The force field simulation algorithm finds a (locally) optima ) . .
rigid transformation due to the gradiesc. However, in our A i the step width of the gradient descent (see below).
setting, a rigid transformation does not allow the singléadaiS @ vector in gradient direction, length dependingZon
points to move independently, but each scan is transformed/Vith these constraints, the transformation for each rigid
allowing translation and rotation. Hencg¢, which acts on Pody in each iteration is computed by the following steps:

the single data points, has to be translated into rigid body1) for each poinip; € P computeFy(p;)



2) for each rigid bodyb,, compute the transformatign = reduced number compared to the original data set. Below we

(7k, Yk, Ok) using the pointp! € rby. show two possible ways of improving the complexity:
We transform eachb;, using its previous transformation Neighborhood approximation: For each point only its lo-
gF and add the current transformation cal neighborhood must be examined, since the forces between
points rapidly decrease with distance. So any neighborhood
ng =gF +1, search algorithm like using-d trees [4] would reduce the

_ ) .. complexity toO(mlogm). We further can improve by using
As in all gradient descent methods, the determination gfe jine segments of the bodies as objects and use bounding
the step widthA, is crucial. Also, gradient methods imply,,y overlaps to find neighboring points. [21, 36] gives an
the danger (_)f being trappgd ir_1 local minimg. We tackle bo@(d10g2 d+s) whered is the number of segments anib the
problems with the determination of step with; and o as ymper of line segments in pair-wise overlaps of the boundin
described in the following section. boxes of the line segments. Observe that< m. [13] reduces
the complexity further down t®(d+s) by exploiting temporal
E. Cooling Down the Motion: Time Steppidg and Distance and geometric coherence. A system of bodies is said to be
Influence Parametes; coherent if the relative changes in the configurations aslsm

The determination of step width parametsr in any gradi- They can achieye this_ spee_d up because they can ca_lche the
ent descent approach is a well known problexp.chosen too §orted lists of nel_ghbonng objepts and hence sort the beigh
small results in inapplicably slow convergence behaviatian in @n expected time af)(d) as in [3, 35]. o
not robust to noise); chosen too big might miss the optimum, Fast Gauss Transform (FGT): Greengard and Strain in-

In FFS, the step width\, is used as a steering parametefoduced FGT [20] which is in turn base_zd on Fast Multlpple
of the algorithm in connection with the parametar which Methods introduced for high speed simulation of particle
determines the influence of distance in the correspondert@amics in potential fields [19]. The main advantage with
function. We designed\, as exponentially decreasing, FGT is that the force field can be computed@im) time

linearly decreasing. thus maI_<|r_19 it Imeqr im. The constant term de_pends onl_y on

A large A, allows the scans to be massively relocatede precision required in computation of the field. _Det_aﬂs_ 0
(shuffled), they overshoot their correct position in theedir choosing the constant can _be fo_u_nd in [20]. The main trickis t
tion of the correspondence gradient. Naturally, a smgll COmpute the for_ce field using divide qnd conquer strategy and
moves the scans less (the amount of replacement is dire@Kploiting Hermite and Taylor expansions of Eq. (3). FGT has
proportional toA2, as defined by the laws of movement). wd€en successfully applied, with several improvements dis we
chose the strategy of decreasifg and o, experimentally, N several applications since it was first introduced [15, 2]
having analogies of the cooling behavior of algorithms like Our current implementation uses the neighborhood approx-
simulated annealing in mind. The imprecise, non optimaldar imation using the bounding box technique as in [21, 36].

A, at the beginning allows the system to possibly escape from
local minima. Observe that in contrast to a technique like V. EXPERIMENTAL RESULTS

simulated annealing we cool down a gradient guided process ) ) )
not a random state change or a random walk technique thaln this section we present the results of applying our

would not be applicable in our high dimensional search spa@PProach to three different data sets, collected using lase
We therefore avoid the problems with a high computationgi9€ Scanners. For each data set the initial configuration,
load (high number of iteration steps) that tend to appear the <_:onf|g_urat|_0n after a few |te_rat|ons of FFS and the final
simulated annealing due to unguided selection of the nate.st configuration is shown. To indicate the convergence speed
The parameter, in equation steers the influence of distanc@d convergence behavior, the plot of the potential (fitness
in the computation of point correspondences . A large measure) during the iteration is given speed. The scan poses

} :
enhances the relative influence of data correspondenchs Vift® shown a&:’ marks. For the experiments we preprocessed
greater distances, and, since it equalizes this spatiaipiy  the data with a line fitting algorithm to model the data set by
property, favors the influence of spatial similarity. A stna line segments, using a robust line-fitting algorithm as dbed

emphasizes local proximity, which is useful if the globalpnall [24]- This step is followed by equidistant resamplingnéi
is already close to an optimum. fitting is used to represent the data with equal density, ds we

The effect of cooling is demonstrated in the experimen"f’éto add geometric information to each data point: each data

using the ’Apartment’ data set, where FFS escapes a loBRiNt is assigned a point-direction, which is the directn
minimum due to the behavior ak; ando,. the underlying line segment. Since the algorithm in [24]@sga
even to small linear structures in the environment, it rssul

in a robust description of directions even in non-struaure

) _ environments like outdoor or search and rescue scenarios.

A. Time complexity Comparison experiments without using line segments showed
Precise computation of force fields requires a quadratite drastic improvement in run time as well as in alignment

time complexity(O(m?)) in the total number of pointsn) performance when line segments are added. However, the

of all the rigid bodies in a configuration. Note that is system was able to converge (slower and to less plausible

the number of resampled points, which can be a drasticalbcal minima) without line segments. In the experiments, th

IV. COMPUTATIONAL COMPLEXITY



masses were steered by point density, motivated by the aimpl (Apartment). The non monotonically decreasing behavior
assumption that regions with lesser density are more likaty the second potential curve indicates the escape from the
to represent noise. This is true for the NIST Data Set Ipcal minimum. In both cases, FFS needed about 30 iterations
bottom left. In this case steering the masses by point dendiefore a stable state was reached.

improved the results and can be seen as proof of concept.
More sophisticated ways to influence the masses are topic of
future research.

A. NIST Data Set |

Figures 3, 4 and 7 refer to this experiment. The NIST
disaster data set used in this experiment simulates a typica
data set of multi robot mapping in rescue scenarios. It ig-esp
cially complicated, as it matches the complicated const$ai rig 5. Left, initial configuration of the Apartment daal(scans). Encircled:
imposed by these settings, which contains poorly estimatatiuge alignment error due to a loop closing effect. Rigtterdf iterations
pre alignment, no landmarks and very little overlap. Theadaff FFS: a large step parametéy; leads to a re-shuffling’ of segments. This

. . needed to escape the local optimum as shown in the leftgeoation.
contains 4 scans taken at 16 positions (total 64 scans), pare also the potential curve in 7
4 scans (N,E,S,W) have an overlap of 5 degrees only, the
positions differ by 2m. The resulting little overlap made it
impossible for sequential approaches to work properly. To
compare our approach with a state of the art implementation
of the simultaneous mapping approach in Lu/Milios style, we
conducted experiments with the 3D Slam system [10]. Both
systems behave similarly in terms of convergence speed and
accuracy.

: Fig. 6. Left, After15 iterations. Right, configuration with minimum potential.
e The encircled regions in this and Fig. 5 show how a typicalplatosing
| problem can be solved using our approach.

Fig. 3. Left, initial configuration of NIST’s disaster daté4(scans). Right, wp o\ ’
after 15 iterations of FFS. =\ ! \.

W x w4 w0 w0 @ @ 0

5 0 15 @ % @ B 40 4 &

T Fig. 7. Left, potential vs. iterations of FFS for disastetaddight, potential
o for Apartment data set. The potential (encircled) of thertapant data is not
monotonically decreasing, indicating a possible escap®a fx local minimum

C. NIST Maze Data

Fig. 4. Left, final map with our approach. Right, the final magtained by This data set consists of 16 scans with similar structures, a
the Lu & Milios technique as reported in [10]. The systems lead talte®f typical indoor environment, yet again scanned with minimal

comparable quality. overlap. See figure 8 and 7 for this experiment.
o
B. Apartment Data Set ﬂ 17
= T
See figures 5, 6 and 7 for this experiment. This is the wﬁfi\ “
o

IROS 2006 test data set, consisting of 2000 scans from which
we selected every 10th scan. We introduced this experiment
to show the ability to escape local minima. We used a pre
alignment that shows a clear loop closing error. Initialigi

the step widthA; and o, to relatively large values helpedFig. 8. Left, initial configuration of NIST's maze datd{( scans). Right,
to realign the data set and to fix the error. Figure 7 showier5 iterations of FFS.

the iteration vs. potential curve of experiment 1 (NIST) and
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Fig. 9. Left, final map obtained with FFS. Right, the potdnéis iterations
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V1. CONCLUSIONS AND FUTURE WORK

We presented a gradient descent based simultaneous mﬂ&'}
scan alignment, based on physical simulation of force fields
The framework is designed to be extended to incorpord®s]
higher-level cognitive features of scans for aIignmenteTIL
future work involves extension of the approach for gener2I1]
purpose registration problems (e.g. registration of bedical

images), object recognition ar3dd mapping.
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