
1

How to Get from Interpolated Keyframes
to Neural Attractor Landscapes – and Why

Manfred Hild Matthias Kubisch Daniel Göhring
Artificial Intelligence Laboratory, Humboldt University, Berlin, Germany

Abstract— Storing poses of a humanoid robot as keyframes
and interpolating between them is a common technique used
to produce robot motion. With this technique complex motion
sequences can be recorded and modified easily by hand, but
it is difficult to incorporate sensory feedback to stabilize the
robot’s trajectories. Neural Networks, in contrast, are suitable for
sensorimotor loops, but it is hard to design predefined attractor
shapes with explicit timing constraints. We introduce basic neural
building blocks and show how to interconnect and parameterize
them in order to achieve desired motion sequences. We explain
why a purely neural approach may be superior to hybrid control
architectures when using sensory feedback, especially if one
wishes to make the robot’s motions more robust by artificial
evolution.

Index Terms— Robot Motion, Keyframes, Neural One-Shot

I. INTRODUCTION

Using interpolated keyframes to produce complex motion
sequences for autonomous, mobile robots is a common tech-
nique which has a number of advantages. Robot poses can
easily be shaped manually, recorded and played back at differ-
ent speeds, until the desired behaviors are tuned to perfection.
Arbitrary poses and sequences are possible since there is no
underlying model which imposes constraints.

Fig. 1. Aida and Aimee from the Humanoid Team Humboldt are able to
perform complex body motions. Each of the two autonomous robots possesses
21 degrees of freedom.

On the other hand, a comprehensive library of motion data
for a humanoid robot with many degrees of freedom (like the
ones shown in Fig. 1) may quickly grow in size and become
uncomfortable to maintain. If there is not enough memory
on the target robot’s microcontrollers, then motion data must
be compressed before stored, e.g., by applying the method of
automatic model construction [4].

In addition to a more compact description of motion se-
quences, stabilization of those is desirable as well. However,

incorporation of sensory feedback is not straightforward using
the keyframe technique. Often, neural networks are used for
sensorimotor loops and motion pattern generation [5], [10]. In
principle, neural attractor landscapes can be used to produce
discrete periodic motion sequences of arbitrary length [8] and
also continuous motions [9], utilizing quasi-periodic orbits.
Even homeostatic control mechanisms which compensate for
mutilated limbs have been proposed [3]. But despite their
potential, it is still hard to design recurrent neural networks
with predefined attractor shapes and explicit timing constraints
at the same time.

How to translate an existing keyframe library into a neural
network that produces identical motion patterns and simultane-
ously allows for sensory input will be addressed within the rest
of the paper. After a brief recapitulation of the keyframe tech-
nique we introduce the Neural One-Shot as a basic building
block, and show how to interconnect and parameterize several
of them in order to achieve desired motion sequences. We
conclude with an explanation, why a purely neural approach
may be superior to hybrid control architectures – especially
if one wishes to use artificial evolution in order to incorpo-
rate sensorimotor stabilization and optimize the flow of the
motions.

II. USING INTERPOLATED KEYFRAMES

A small excerpt of an actual motion library in use can
be seen in Fig. 2. The numbered square boxes and arrows
in between represent keyframes and connecting transitions,
respectively. Different shaded rectangles indicate groups of
keyframes that belong to the same kind of motion sequence,
e.g., standing up from the ground, jumping to the left or right,
falling to the front, and so forth.

Fig. 2. Typical network of keyframes which includes different motion
sequences. Colored groups indicate motions of the same kind, e.g., jumps
to the left and right are shown in the red box (center bottom).

2

A. Keyframes and Transitions

Assume keyframe Fi defines the target angles for all joints
of the humanoid robot at a certain time tn (see Fig. 3).

Fig. 3. Two keyframes Fi and Fj are used to store successive robot poses.
The interpolation between them is associated with transition Tji and has a
finite duration ∆Tji

.

Then keyframe Fj defines the target angles after transition
Tji at time tn+1 = tn + ∆Tji

. During the transition all target
angles are linearly interpolated. This is no constraint, since the
real hardware would smooth out more complex interpolating
functions. Furthermore, non-linear distortions can be approx-
imated by inserting additional keyframes.

B. Selective Branching

Once in a while, a robot has to switch between behaviors,
e.g., after having fallen onto the ground, the most reasonable
motion sequence for a humanoid robot is to quickly stand up
again. Exactly this can be achieved with selective branching
between keyframes as illustrated in Fig. 4.

Fig. 4. More than a single transition can leave a keyframe. Here an unlabeled
default transition Tki connects keyframe Fi to keyframe Fk . The optional
second transition Tji to keyframe Fj is labeled with a so-called selector S.

Necessarily, only one target can be followed at a time, so
there is always at most one selector active. Each keyframe
contains a flag which, when set, deletes the active selector.
The last keyframe of the stand up motion sequence has this
flag set, otherwise the robot would start the stand up motion
again as soon as being in upright position.

III. USING NEURO-DYNAMICS

As Rumelhart and McClelland point out in [11], it is no
problem to store several stimulus/response patterns in a simple
feed-forward network. When the outputs of this network are
reconnected to the inputs, pattern sequences can be recalled.
Even selective branching could be incorporated, using some
dedicated inputs which are biased according to the active
selector. Tiňo et al. [13] discuss a more sophisticated approach
to implement a Finite State Machine (FSM) using a recurrent
neural network.

A third consideration by Afraimovich et al. [1] is based
on stable heteroclinic sequences of a dynamical system.
In comparison to the two methods mentioned above, their
mathematical construction allows for explicit timing, but as
they strive for neurobiological analogy they use continuous
time models which are a computational burden for real-time
processing on autonomous robots.

In contrast to [11], [13], and [1], we use the transient timing
of iterated maps, i.e., discrete-time neural networks. Since
each keyframe will be replaced by a 2-neuron-module, we
end up with sparsely connected networks of low computational
complexity O(n), where n is the number of keyframes.

A. Design of a Neural One-Shot
What we are targeting at, is a purely neural translation of ex-

isting keyframe networks including precisely timed transitions
and selected branching as described above. As the activity
between keyframes is passed on via (possibly conditional)
transitions, it is reasonable to mimic this behavior within the
neural network, where activity is passed on across synaptic
weights.

The final neural module able to accomplish the desired
dynamics has been found by artificial evolution. After sorting
out solutions with critical weight settings, removing redundant
inter-neural connections and analyzing the remaining candi-
dates for ease of timing modulation, we came up with the
structure shown in Fig. 5.

Fig. 5. Neural One-Shot which is able to replace one keyframe and one
transition. The recurrent weight wf may be used to set the timing, while
leaving input threshold and output levels intact. The numbers inside the
neurons denote bias terms.

The update formula is as follows:

(
xo(t)
xh(t)

)
= tanh

W

xo(t− 1)
xh(t− 1)
xi(t− 1)

1

 ,

where t is the discrete time step, xi and xo are input and output
signals, respectively, xh is the signal of the hidden neuron, and

W =
(

0.1 3.7 −2.6 −3.9
wf 3.4 3.9 2.8

)
is the weight matrix including the timing parameter wf and
the neurons’ bias terms. Normally, xi, xh, and xo rest at a
negative saturated level close to −1. After having received a
positive square pulse of arbitrary duration at the input, the
module itself presents a positive pulse at the output. Thus, the
module can be called a Neural One-Shot (NOS).

B. Functional Analysis
Since the input signal xi is constantly close to −1 or +1

most of the time, the dynamical system can be reduced to

x(t) = tanh
(
W̃x(t− 1) + b

)
,

where

x =
(

xo

xh

)
, W̃ =

(
0.1 3.7

−0.5647 3.4

)
,

3

and

b =

(
−6.5 6.7

)T

, xi = +1(
−1.3 −1.1

)T

, xi = −1
,

depending on the input signal xi. The timing parameter has
been fixed to wf = −0.5647, which corresponds to an output
pulse width of 50 time steps. For xi = −1, the NOS exhibits
a stable fixed point at x∗− ≈ (−1 −1)T , and for xi = +1
there is one at x∗+ ≈ (−1 +1)T .

A positive square pulse at the input starts with a positive
edge, rests close to +1 for an indefinite time, and finally
returns to −1 after a negative edge. Both edges are very steep,
each taking only up to three time steps. During these steps,
the NOS can be assumed static, since the magnitude of the
vector field

Vxi(x) := tanh
(
W̃x + b(xi)

)
− x

is almost zero near the fixed points. Now, the operation of the
NOS can be analyzed by studying the phase space step by
step. In quiescent state, all signals are at a negative saturated
level, i.e., the NOS rests in the fixed point x∗− for xi = −1.

After a positive edge of the input signal, the attractor space
is as shown in Fig. 6. Fixed point x∗− has been replaced by
fixed point x∗+, which in turn is reached within a few time
steps. For both fixed points xo = −1 holds true, so the output
signal remains unchanged at negative saturation. If the NOS
was not in quiescent state but already producing an output
pulse, then that pulse will immediately be aborted and the
output will be reset to xo = −1.

For the NOS to work properly, the input signal has to stay
positive for at least five time steps. Using an update frequency
of 100Hz on a real robot platform (like the one shown in
Fig. 1), this means that transitions have to last for a minimum
of 50ms, which does not impose a constraint in practice. The

Xo

Xh

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Fig. 6. A positive input signal xi = 1 will activate the hidden neuron, but
leave the output neuron’s signal low. If there is an output pulse in progress it
will be reset to xo = −1, as can be seen from the vector field.

Xo

Xh

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Fig. 7. After a negative edge of the input signal (xi ↓ −1), the output will
immediately be activated to xo = 1 and stay there for a long time, since the
vector field almost vanishes if both neurons are fully positive (see top right
corner). Return to the inactive mode happens within only three time steps
(see transient’s sharp bends), which guarantees a steep negative edge of the
output pulse (compare Fig. 8).

exact timing always stays accurate within the resolution of one
time step.

Finally, after a negative edge the input signal is back at
xi = −1 and the corresponding vector field changes to the one
shown in Fig. 7. The output signal immediately jumps to xo =
1 and rests there for a desired number of time steps, as adjusted
by parameter wf (here: 50 time steps). The characteristics of
the vector field guarantee a steep negative edge of the output
pulse.

C. Timing and Robustness

The extreme time ratio between rapid switching and elon-
gated retention period is striking, most notably since the
NOS consists of only two neurons. Interestingly, there are no
hysteresis effects taking place. The NOS works without the
usual integrator and Schmitt trigger combination. Instead, the
long transients are produced by a so-called ghost, i.e., a fixed
point which just disappeared by bifurcation (see [12]). If the
corresponding bifurcation parameter wf gets too high, then
the ghost near (1 1)T transforms back to a stable fixed
point and the pulse duration grows to infinity.

The range xo = −1 and xh > 0.5 in phase space is
interesting as well (see Fig. 7). Transients that originate from
there still reach the ghost. Consequently, the output signal
will be positively saturated and the output pulse will last over
the predefined time even if the hidden neuron was not fully
charged positive in the first place. This increases the NOS’
robustness against input signals which are extremely short or
not at the correct level.

Fig. 8 shows the NOS’ output waveforms for different
values of the timing parameter wf . During artificial evolution
and optimization afterwards, the interconnecting weights have
been chosen in a way that eases timing adjustments in the

4

mostly needed range between 5 and 50 time steps. Using
an update frequency of 100Hz this corresponds to transitions
between 50ms and up to half a second. Longer periods are
feasible as well, but require a higher numerical resolution both
of the parameter wf , as well as the neural signal itself.

a
b

c
d

e

t

Xo

0 10 20 30 40 50 60 70 80
−1.0

−0.5

0.0

0.5

1.0

Fig. 8. The Neural One-Shot’s output pulse width can easily be adjusted by
varying timing parameter wf . Shown are output transients for the following
values: a) −0.9959, b) −0.6087, c) −0.5777, d) −0.5692, and e) −0.5657.

D. Interconnecting Neural One-Shots

In order to translate a comprehensive library of keyframe
based motion data into a purely neural counterpart, one has to
obey the following steps:

1) For each keyframe (including its afferent transition),
insert an NOS with adequate timing. Inputs and out-
puts of successive one-shots have to be connected with
unit weights (+1) according to the primary keyframe
network.

2) Selective branches require adjustment of the hidden
neuron’s bias. For every additional input signal to an
NOS, the bias has to be incremented by +1 in order
to compensate for the additionally incoming quiescent
level of −1.

3) The selectors are to be implemented as separate neurons,
which output +1 when active, and −1 otherwise. Now,
if two transitions leave a keyframe – one with, and the
other without selector, then connect the two one-shots
corresponding to the selector-transition with weight +1,
and use −1 for the other connection. The biases of both
hidden neurons have to be adjusted by −1. Depending
on the selector neuron, only one NOS will be activated,
as the other one will be blocked by the negative bias.

4) Connections originate from the output neuron of each
NOS to those motor neurons, the target angle of which
is supposed to change while passing through the corre-
sponding keyframe. Weight values have to be choosen
according to the target angles.

5) Finally, the motor neurons’ biases have to be incre-
mented according to the number of incoming connec-
tions. Each motor neuron has to be equipped with a

self-connection of value ws = e−1/τ , in order for
the motor neuron to interpolate between the keyframe
transitions respective the pulse duration of the one-shots.
The degree of interpolation can be adjusted by the time
constant τ .

The described procedure is meant to be executed automati-
cally, since a machine translation is faster and less error-prone.
Naturally, there are no parameters to be optimized manually.

IV. SUMMARY AND DISCUSSION

After translation of an existing motion library into a corre-
sponding recurrent neural network, one is confronted with a
control structure that does exactly the same as the interpolated
keyframes before. Instead of a linked data set, now a single
weight matrix encodes all the motion sequences at once. As
already mentioned, the weight matrix is extremely sparse – the
number of non-zero entries grows linearly with the number of
keyframes.

Now, what are the advantages of a purely neural control of
complex motion sequences? As a matter of course, sensory
information can be injected easily. This can tried to be done
manually with a bit of flair and close inspection of the real
robot, e.g., the forward bending torso of a humanoid robot
can be compensated by driving the hip joints or ankle joints
into opposite direction. But this could as well be achieved with
hybrid control architecture, where a layer of neurons would be
inserted between a keyframe controller and the motor neurons.

The fundamental advantage of the proposed approach lies
within the possibility, to realize complex mechanisms of motion
stabilization by incorporating sensory information. Thereby,
different mechanisms can be combined in the sense of a
cascade control. Depending on the location and magnitude
of sensory injection, the motion sequences inter alia can be
modified in the following ways:

• Alteration of the joints’ target angles
• Slowdown or speed-up of motion sequences
• Contraction or partial skipping of motion sequences
• Selection between alternative motion sequences
• Trigger of dedicated motion sequences (reflexes)
• Suppression of entire motion sequences (protective rigor)
Further possibilities are quite conceivable, and can be un-

leashed using artificial evolution, just as the NOS itself has

Fig. 9. Simulation environment which is used to evolve recurrent neural
networks that are able to control different motions of a humanoid robot.

5

been found. Evolving neural networks that control motion se-
quences instead of a single motion is a sophisticated problem,
but it can be tackled as Nishimoto and Tani have shown in
[6]. Nolfi and Parisi described the evolution of sensorimotor
coordination (see [7]).

When starting with an already existing and well-functioning
network, only an incremental evolutionary run is needed. This
is more advantageous than evolving from scratch, since it takes
considerably less time. Within the scope of a current thesis it
could be shown, that a humanoid robot is able to walk stable
using a sensorimotor coupling. Fig. 9 shows the robot walking
in the simulation environment (see [2] for details). Further
promising results will be reported in a forthcoming paper.

REFERENCES

[1] V. S. Afraimovich, V. P. Zhigulin, and M. I. Rabinovich. On the origin
of reproducible sequential activity in neural circuits. Chaos, 14(4):1123–
1129, 2004.

[2] D. Hein. Simloid: Evolution of biped walking using physical simula-
tion: Diplomarbeit. Master’s thesis, Institut für Informatik, Humboldt
Universität zu Berlin, 2007.

[3] M. Hild and F. Pasemann. Self-adjusting ring modules (SARMs) for
flexible gait pattern generation. Proc. of Int. Joint Conf. on Artificial
Intelligence (IJCAI), 2007.

[4] T. Inamura, H. Tanie, and Y. Nakamura. Keyframe compression and
decompression for time series data based on the continuous hidden
markov model. Proc. of Int. Conf. on Intelligent Robots and Systems
(IROS), 2:1487–1492, 2003.

[5] K. Nakada, T. Asai, and Y. Amemiya. An analog neural oscillator circuit
for locomotion controller in quadruped walking robot. Proceedings
of the International Joint Conference on Neural Networks, 2:983–988,
2003.

[6] R. Nishimoto and J. Tani. Learning to generate combinatorial action
sequences utilizing the initial sensitivity of deterministic dynamical
systems. Neural Networks, 17(7):925–933, 2004.

[7] S. Nolfi and D. Parisi. Exploiting the power of sensory-motor coordi-
nation. Advances in Artificial Life: Proceedings of the 5th European
Conference (ECAL ’99), 1999.

[8] F. Pasemann. Characterization of periodic attractors in neural ring
networks. Neural Networks, 8:421–429, 1995.

[9] F. Pasemann, M. Hild, and K. Zahedi. SO(2)-networks as neural
oscillators. Proc. of Int. Work-Conf. on Artificial and Natural Neural
Networks (IWANN), pages 144–151, 2003.

[10] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel.
Dynamical principles in neuroscience. Reviews of Modern Physics,
78(4), 2006.

[11] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing.
MIT Press, 1986.

[12] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley
Publishing Company, 1994.

[13] P. Tiňo, B. G. Horne, C. L. Giles, and P. C. Collingwood. Finite
state machines and recurrent neural networks – automata and dynamical
systems approaches. Neural Networks and Pattern Recognition, 1998.

