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Abstract— Soon, in many service robotic applications, a real-
time localization and 3D-mapping capability will be necessary
for autonomous navigation. Toward a light and practical SLAM
algorithm for indoor scenarios, we propose a fast SLAM algo-
rithm which benefits from sensor geometry for feature extraction
and enhance the mapping process using dominant orthogonality
in the engineered structures of man-made environments. Range
images obtained using a nodding SICK are segmented into planar
patches with polygonal boundaries in linear time. Right corner
features are constructed based on the recognized orthogonal
planes and used for robot localization. In addition to these
corners, the map also contains planar patches with inner and
outer boundaries for 3D modeling and recognition of the major
building structures. Experiments using a mobile robot in our
laboratory hallway prove the effectiveness of our approach.
Results of the algorithm are compared with hand-measured
ground truth.

I. INTRODUCTION

One of the most fundamental requirements of an intelligent
mobile robot is autonomous navigation. This capability is real-
ized by obtaining a suitable map of the environment, which is
a compact representation of the robot surroundings. Simultane-
ous Localization and Mapping (SLAM) is a complex problem
where the robot is also required to remain localized with
respect to the portion of the environment that has already been
mapped. Although today there are quite various techniques
for solving SLAM, (ex. realtime particle filters, sub-mapping
strategies or hierarchical combination of metric-topological
representations; see [13] for a survey), still consistency and
complexity remain the most challenging problems in the field.
This is specially the case when dealing with more dimensions
and degrees of freedom, as in the 3D-SLAM.

Regardless of the innate complexity, SLAM algorithms are
eventually needed in simple embedded mobile robots with
limited processing power. Many of them are targeted for
indoor usage such as health care [12] or housekeeping ap-
plications [5]. However, less research effort has been done on
development of lightweight range-based 3D-SLAM algorithms
well adapted for the conditions of indoor environments. As
stated in [15], such algorithms are necessary as a basis for
many current applications and also a vast number of potential
new applications in the future, like autonomous security and
surveillance systems or surveying robots for 3D reconstruction.

Considering indoor environments, in this paper we aim
to develop a lightweight and realtime consistent incremental
SLAM algorithm based on right angle corners and planar
surfaces which are the dominant structures. In our previous
work we presented OrthoSLAM [10] for realtime mapping of

office-like environments in 2D. Considering a very common
constraint usually present in many indoor environments, the
orthogonality, we showed that the uncertainty on the robot
orientation can be kept low and bounded. Knowing the robot
orientation, SLAM is reduced to a linear estimation problem.
The simple assumption of orthogonality on the shape of the
environment, comes from the fact that in most indoor engi-
neered environments, major structures, like walls, windows,
cupboards etc., can be represented by sets of planes which are
either parallel or perpendicular to each other. In fact, ignoring
other planes (arbitrary oriented or non-orthogonal) not only
does not lead to loss of valuable information during SLAM,
but also brings robustness on the robot orientation; and filter
out many dynamic objects. This exactly conforms to our goal
in mapping and later recognizing the major structures of the
buildings.

However, after localizing the robot within the SLAM frame-
work based on mentioned subset of features, clearly it is
always possible and straight forward to put the rest of the
features in the map in a different layer. Hence, the main idea
is to distinguish between two types of features in general: core
features (in our case orthogonal features in indoor) which are
robust enough to be used for SLAM, and the other features
which may be useful to be mapped from the representation
perspective, but they are not that much unique, static or well-
observed to be used for localization. Arbitrarily oriented planar
patches in this work are treated as the second mentioned
category, while the SLAM core uses right angle corners based
on orthogonal planes.

The assumption of orthogonality as a geometrical constraint
has already been used by some other researchers, for ex-
ample [9, 5]. This geometrical constraint is usually applied
as a post-processing step in mapping in order to increase
the precision and consistency of the final map. However, in
our approach, the orthogonality assumption is not applied as
an additional post-processing constraint, rather it is used to
select only orthogonal planes for construction of the right
angle corners which in turn are used for localization. In the
orthogonal framework, lines and planes are represented by just
one distance parameter (no orientation is needed). In addition,
as far as the robot is able to detect orthogonal features, it is
able to determine its orientation with a very low and bounded
uncertainty. Since there is no data association at the level of
single features in the process of obtaining the orientation, the
resulting estimate remains highly consistent. Consequently,
robot localization reduces to finding the translation between
the robot and the global coordinate system. This is a linear
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estimation problem which is solved using high level right angle
corner features constructed by the orthogonal planes.

In fact, here the mapping is done based on the orthogonality
constraint and in a simplified framework, rather than using the
constraint as an extra observation. This is a great difference
which leads to the removal of non-linearities in the observation
model and a rather precise and consistent mapping. In this
sense, our work is similar to Orthogonal Surface Assignment,
a recent work of Kohlhepp et al. in [6]. Their approach uses the
same constraint in the framework of multi-hypothesis track-
ing. However, we use right angle corners and the presented
algorithm is much simpler.

A nodding SICK provides us with rich point clouds which
are segmented into smooth parts using our Bearing Angle
based segmentation algorithm introduced in [4]; see Fig. 1.
Planar patches are then fitted to each segment and coplanar
patches are merged. In addition, boundary polygons are ex-
tracted from the range image and treated afterward to capture
the shape of the environment. Major orthogonal planes nearby
each other are then used to construct corners as robust and
well distinguishable high level features. Localization is done
in two steps: first robot orientation is inferred using the
detected orthogonal planes, then its translation is calculated
by iteratively matching the observed and mapped corners.
Having the robot position, all the extracted planes are finally
mapped along with their boundaries and holes information.
This gives the necessary framework for recognition of the
major structures in the buildings. Obtaining structure annotated
maps is one of our goals towards putting more semantics in
robot navigation.

II. RELATED WORK

In order to build 3D maps of the robot environment, apart
from stereo cameras which deliver range information just for
textured part of the scene, many researchers use a vertical laser
scanner that creates registered 3D data by sweeping through
the scenes [14, 3, 16]. It is more efficient to move the 2D sen-
sor instead. To do so, usually 3D laser scanners are constructed
by rotating a 2D laser range finder. This can be implemented
by nodding or rotating the 2D scanner around its lateral or
radial axis in a stepwise or continuous manner. Such sensor
setups are used in various experiments [17, 11, 18, 1, 7, 8].
In this work a nodding SICK (Fig. 1) is used as the 3D range
sensing device and the common stop and move scenario is
considered to obtain consistent point clouds.

In most of the approaches to 3D-SLAM, the map directly
includes point clouds registered in a global coordinate sys-
tem with ICP [19]. The problem with this approach or its
discretized alternative, occupancy grids [2] is that they don’t
benefit from the geometrical symmetry present in many target
environments like indoor or urban regions; hence the provided
map is not compact nor does it have any abstraction.

A well accepted model to capture geometry of the struc-
tured environments is the planar representation which can be
enhanced by encoding the boundary information (Fig. 2(a)).
A major challenge then, is how to segment huge amount of
scanned points into homogeneous regions, possibly planar,

Fig. 1. Right: BIBA robot with nodding SICK attached; note that the other
two back to back installed scanners are not used in the experiments reported
here. Center: A sample range image saved in the corridor of our lab
Left: Segmented range image using BA-based segmentation

with reasonable performance. In [17], RANSAC along with a
region growing approach is used. This approach does not take
into account non-uniform distribution of the points in the cloud
for the initial voxelization which is a dominant fact in constant
angular resolution scanners like SICK. An improved Split-
and-Merge scenario is utilized in [7]. It mainly lies in edge-
based category of segmentation methods with intermediate
fittings and iterative splitting which leads to time complexity
of O(n log n). In this paper, BA-based segmentation [4] is
used which is O(n) and benefits from geometry of the sensor;
Fig. 1 shows a sample scene and result of the segmentation.

Using extracted plane segments, [17] implements an EKF to
update the map constructed based on SP-model. Kohlhepp et
al [6] propose an elastic view graph which links range views by
variable pose transformations as a local tracker underneath of
a global layer which closes the loops. A Building Coordinate
System is tracked using the proposed orthogonal surface
assignment algorithm for man-made work spaces. This is very
similar to our usage of the orthogonality constraint. However,
they rely on matching single planes and tracking more than one
hypothesis to obtain a robust estimate; while we benefit from
matching combinations of planar segments related together by
means of a 3D right-angle corner. In addition, we enhance
the reliability of the data association using iterative corner
matching.

III. FEATURE EXTRACTION

As mentioned, SLAM can be implemented on the same level
as the raw data points obtained from the scanner. Single points
can be treated as orientation-less features which are less certain
and less distinguishable but may be matched in large amount to
compensate the uncertainties. A more efficient alternative is to
push the mapping one level up where features are less frequent,
but more informative, certain and unique. Plane features are
a quite reasonable choice for representation of the indoor
environment. Here, scanned points are grouped into the smooth
regions using Bearing Angle based segmentation [4] and
their inner and outer boundaries along with their neighboring
regions are obtained. Using Principal Component Analysis
(PCA) the least square plane is fitted to each region and
coplanar regions are merged. The common Hessian notation
is used to represent planar features: n.x− d = 0, where n is
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the normal vector and d is the signed distance to the origin.
the plane normal vector, n, is obtained as the eigenvector
corresponding to the smallest eigenvalue of matrix C:

C =

 ΣX 2
i ΣXiYi ΣXiZi

ΣYiXi ΣY2
i ΣYiZi

ΣZiXi ΣZiYi ΣZ2
i

 where
Xi = xi − x̄
Yi = yi − ȳ
Zi = zi − z̄

which is the covariance matrix of the associated points to
the plane. Plane distance parameter is obtained as d = n.cp,
where cp = (x̄, ȳ, z̄)T . As a notion of how good the plane
estimate is, a certainty factor is considered: cf = kNµ2S,
where k is a balancing coefficient, N is the number of points
assigned to the plane, µ is the ratio of inlier points and S is
the area. In the orthogonal framework, n is known a priori
and the planes are represented just with a single parameter d.
Hence, cf can simply be considered proportional to the inverse
of the variance of d. When µ < 80% the extracted region is
not accepted as a planar patch.

Unfortunately, infinite planes are not that much unique
and in cluttered areas data association would be problem-
atic. Adding boundary information and using plane segments
may help; specially in localization, where the map is given.
However, the shape of segments is not invariant through
successive observations in SLAM. The robot may observe
unseen parts of the same plane which may not be similar to the
previously mapped areas, but still it should be recognized as
a re-observed feature. Hence, boundary information may just
indirectly help in accepting more deviation in other parameters
of the segment when some similarity is detected. The distance
measure between plane i and j, when |di − dj | < δmax

d and
nT

i .nj > cos(δmax
n ), is calculated as:

dij = kd|di − dj |+ kn cos−1(nT
i .nj) + ks(1−

Si∩j

min(Si, Sj)
)

where kd, kn and ks are three coefficients balancing the
importance of distance, orientation and shape in the final
distance measure. The symbol S denotes the surface and i∩ j
is the intersection of the boundary polygons of plane i and
j. In addition to data association, the boundary information is
used to reconstruct the structures present in the scene much
more realistically by preserving door openings, windows, etc.
(Fig. 2(a)).

However, Much more robust association is obtained when
features are matched jointly since the chance of observing
similar cases drops dramatically as the number of jointed
features increases. To take a first step toward this idea, corners
are used here. Corners are intersection points of sets of three
planes and encode the whole information of their states.
Therefore, in observing and matching each corner feature,
in fact a certain combination of the three planar segments is
observed and matched with the map. This leads to more unique
features and less clutter in the feature space, hence results a
more robust data association.

Using the assumption of orthogonality, 3D right angle
corners (Fig. 2(b)) are used as high level features for robot
localization. It should be noted that these corners are not
detected as point features from the raw data, rather they are

(a) (b)

Fig. 2. (a) Top: Planar patches with inner and outer boundaries extracted
from the range image of Fig. 1 Bottom: Point representation of the extracted
plane segments for the same scene (b) A sample area in the map including
3 corners

constructed using the result of the plane extraction and after
filtering out non-orthogonal planes.

Orthogonal planes (segments) are distinguished by consid-
ering a global coordinate system which is called Building
Coordinate System (BCS) and is aligned to main directions
of the building (length, width and height). Such a coordinate
system can be automatically assigned in the start of the
mapping process using initial observation (as explained later
in section V) or manually defined by providing the initial robot
orientation. Then, extracted planes are transformed to global
frame using odometry readings and planes with normal vector
parallel to the main axes of the BCS are tagged as orthogonal
planes and treated in each of the three dimensions separately.
The planes perpendicular to the x-axis of the BCS are called i-
plane (examples are planes A, D and G in Fig. 3). Accordingly,
j-plane and k-plane are also categorized:

i-planes = {i | |(1, 0, 0).ni| > cos(Φ)} (1)
j-planes = {i | |(0, 1, 0).ni| > cos(Φ)} (2)
k-planes = {i | |(0, 0, 1).ni| > cos(Φ)} (3)

where small and less supported planes1 are not considered
here and Φ is the maximum acceptable deviation which is
set to 2o in the experiments. Selecting one plane from each
of these sets, a corner is constructed if they are neighbors
or their intersection point lies near (within a 30cm range)
or inside each of the i-, j- and k-plane segments. If so, the
intersection point is considered as corner position with the
corresponding certainty factors along each direction. Normal
vectors of the three planes are orientation of the corner edges,
or its orientation for short. Fig. 2(b) shows three such corners
in the map. Using the neighborhood information makes it
possible to observe corners which are actually occluded and
the corners point itself is not in the sensor view. However,
still all the three planes of a corner should be observed and
no inference is performed on the shape of the planes to guess
existence of the corners; for example in Fig. 3, four corners
of each of the cubes which are not numbered, is not observed
in the presented scene.

1Planes with area smaller than 0.1 m2 and supported by less than forty
measurement points
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Fig. 3. A sample scene containing different types of corners. Small arrows
show surface normal vectors aligned with the depicted BCS. The state vector
is also given for the first four corners.

In addition, for each intersection line of each corner, a
binary state is defined which encodes the relative state of the
corresponding planes. Consider the eight numbered corners
depicted in Fig. 3. Assume the robot is observing the scene
from the same view and surface normal of the segments are
always pointing toward the robot as shown with the small
arrows. All four corners observed from the red cube (on the
left side of the picture) share the same direction; similarly
all four corners observed from the yellow cube (on the right
side of the picture) are also identical in this regard. However,
each corner in these four-corner sets has a different state (is
of different type). For example consider corner 1 and 2. The
intersection line of plane E and C is in front of corner 2 but
behind corner 1. Since this intersection is along the x-axis of
the BCS, its state is called i-state and is equal to +1 for corner
2 meaning intersection lies in positive side and -1 for corner
1 accordingly. For the other two intersection lines, j-state and
k-state are defined in the same manner. In Fig. 3, state vector
is given for the four corners of the red cube.

Adding orientation and edge states to the information en-
coded in the corners, dramatically increases their uniqueness.
On the other hand, since corner information is obtained from
major orthogonal planes with large number of supporting
measurement points, corners are also robust.

IV. LOCALIZATION

Although mobile robots in indoor mostly have a 3D config-
uration space (x, y and robot heading angle), here a full 6D
space is considered to support environments with ramps. In
addition, this helps compensating some non-systematic errors
of the custom built sensing system, like one half a degree
change in start angle of the nodding operation, and obtaining
more precise 3D maps. Hence, the robot pose is estimated
in all 6 dimensions (usually pitch and roll remain below one
degree and z vary few millimeters in flat areas). Using the
orthogonality constraint, robot localization is achieved in two
stages: first its orientation with regard to BCS is found and
then its position is obtained.

Relying on this fact that the maximum error of the robot
odometry in the robot heading angle between successive
observations is bounded, orthogonal planes can be detected by
searching orientation intervals around odometry predicted BCS
axes; see Eq. 1-3. Using the normal direction of these planes,
each weighted by its certainty factor, new BCS orientations are
estimated by fitting three orthogonal directions to the observed

orthogonal plane set and the whole scene is aligned with the
new BCS.

Secondly, translation of the robot is obtained by matching
the right angle corner features. Corner features are constructed
based on the tagged orthogonal planes as explained in previous
section, and matched with the mapped corners in an iterative
manner. The process of matching is very similar to ICP, but
applied on corners and for translation only. At each iteration
corners are binded to their nearest neighbors and hence each
matching a set of three planes with the map at the same time.
Considering the set of matched planes through the matched
corners, a global transformation is calculated by weighted
average of the innovations of the matched planes. Certainty
factors of the planes are used to obtain the weight. Considering
the x direction and ij as a match between i-planes of the map
and the current observation:

∆x =
Σ[wij(di − dj)]

Σwij
where wij =

min(cfi, cfj)
dij + kw

where kw is a constant adjusting the effects of the weaker
matches against the stronger ones. ∆y and ∆z are calculated
in the same manner using matches found for j-planes and k-
planes. Then the calculated transformation is applied to the
observation set and the process is repeated until bindings
remain unchanged in successive steps or a minimum error is
reached. Normally when all of the matchings are correct in
the first step, no more iterations are needed, otherwise in few
steps the jointly compatible match is found. Since, the number
of corners is not high and also they are quite distinctive, the
matching is very fast.

Iterative matching of the corners, is an additional insuring
policy to avoid spurious data association. Although corners are
very distinctive features and the chance of a wrong match is
generally low, still it is important to compensate for the smaller
numbers they are matched in, and also low observation rate
of the nodding SICK. It is worth mentioning that matching
corners are nothing more than matching the corresponding
sets of three planes simultaneously; and in case no corner
can be matched, the system reduces to normal plane segment
matching but restricted to the orthogonal directions.

V. MAPPING

An important issue in robotic mapping is the notion of
uncertainty. Dealing with plane features in 3D range mea-
surement, considering only systematic errors modeled using
covariance matrices sometimes can be misleading. Usually
standard deviation of around 1-2 centimeters is considered
for single range measurements of SICK. Then planes with
thousands of measurement points turns out to be precise within
fractions of millimeter which is clearly unrealistic. As the
number of measurement points on a plane increases, non-
systematic error dominates the real uncertainty, so heuristic
terms should be added to the covariance matrix to compensate.
In this paper, instead of calculating the covariance matrix of
the planes, and then adding the mentioned heuristic values;
a rough estimation of the uncertainty is taken into account
based on the introduced certainty factor (cf ). Within the
framework of orthogonality constraint, orthogonal planes are
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represented by a single distance parameter. In addition, given
the robot orientation in each step, the estimation of the feature
parameters in the map is linear. Therefore, this simple and
efficient approximation for the uncertainty fits well.

On the other hand, each set of orthogonal planes is indepen-
dent of the others. In other words, i-planes are independent of
the j- and k-planes, since they are perpendicular to each other.
Therefore, three independent maps are used to enhance the
efficiency in searching for a match in data association stage.
Hence, the system estimates state X and its covariance P for
i-, j- and k-planes separately:

X =


d1

d2

...
dn

 P =


1/cf1 0 · · · 0

0 1/cf2
. . .

...
...

. . . . . . 0
0 · · · 0 1/cfn


where n is the number of planes in each direction and
grows with time. To estimate X, a simple Kalman Filter is
implemented for each direction which neglects the dependency
of distance parameters within each orthogonal set, as P is
assumed to be diagonal.

To initialize the map, first directions of the Building Coor-
dinate System, the global coordinate system which is aligned
with the structure of the indoor environment, should be as-
signed and then as the robot moves, it should be tracked in
successive steps. As mentioned, the initialization step can be
done by manually providing the robot with its heading angle
at the beginning. In addition assuming the robot is standing
on a flat ground, one just needs to determine a single rotation
which is the robot heading angle. Taking the first observation
in a proper condition which lets covering reasonable parts of
the surrounding walls, it is possible to infer the BCS. The
orientation of the 2D projection of the surface normals on
the horizontal plane, calculated for each point after the plane
extraction, is used to create an angle histogram. The two
largest peaks 90 degrees apart belong to the most observed
orthogonal directions which can be assigned to x and y axis of
the BCS; then z direction is obtained from their cross product.

After the initialization, in each step, the observed scene
is aligned with the BCS and the robot is localized using
the corner features. Since the observations are one to two
meters apart each other, the odometry uncertainty assumed
much bigger than the uncertainty of observations from the
nodding SICK; hence the robot position is overwritten with
the result of corner matching. As an outcome of matching
the corners, corresponding segments in the map are already
known for the planes linked to a corner. The rest of the planes
are also matched and then the map is updated and the new
features (planes and corners) are added.

VI. EXPERIMENTAL RESULTS

As a proof of concept for the proposed algorithm, BIBA
robot (Fig. 1) equipped with a nodding SICK is used. The
robots is running a real-time operating system (RTAI Linux)
with an embedded odometry, obstacle avoidance and remote
control module via wireless network. The two fixed SICK

scanners are not used in the SLAM process presented here. In
this experiment, the robot starts in a crowded office, explore
it for some time, then go out to the corridor and finally
enters another office. Totally, 27 3D range scans are taken,
216,961 points each. The whole experiment collects 5,857,947
measurement points. Unfortunately, using the current sensor
setup, it takes around a minute to complete such 3D scans.
This explains why the observation rate is low and the data
association is very critical.

Fig. 4(a) shows the map obtained by registering the point
clouds just using the robot odometry. The upward deviation of
the right part of the map shows the inconsistency caused by
unbounded and growing error. In contrast, in Fig. 4(b) the map
obtained by the proposed algorithm seems quite consistent and
specially quite precise in orientation, which is directly the
benefit of using orthogonality constraint. In this figure, the
green polyline (light) shows the obtained robot path against

(a) (b)

(c)

(d)

Fig. 4. (a) Point map constructed just using the robot odometry. As it can
be seen, the map is inconsistent, but dense cloud makes it less apparent. (b)
Top view of the constructed map using corner features (the horizontal planes
are omitted). It is clearly consistent and near the plotted ground truth. The
blue (dark) polyline is the robot path obtained from the odometry and the
green polyline shows the path calculated with SLAM. (c) Same as (b) but
including horizontal planes. (d) A different view of the map in (b).
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Fig. 5. Point cloud representation of the whole map. For clarity, points are
colored based on the plane they belong to. At right the ceilings are omitted
to reveal more details.

the odometry measured path which is plotted in blue (dark).
In addition, red lines show the hand measured ground truth.
For clarity, in this figure horizontal planes (mainly the floor
and the ceiling) and non-orthogonal planes are not plotted.
Hence, i- and j-planes look like black lines from the presented
top view. It can be observed that the orientation is perfectly
precise. However, at the right side, small error can be noticed
in the x-direction. This is mainly the result of the distance
traveled in the horizontal corridor. In the corridor, there are
very well observed walls perpendicular to y-axis (j-planes)
which are supported by many measurement points and help
the robot to be very certain in corners lateral position but in
x-direction the situation is vice-versa. As a direct consequence,
robot uncertainty is much higher in x-direction and some offset
remains in the right part of the map. Ceiling and floor are
depicted in Fig. 4(c) along with the detected corner features.
Fig. 4(d) shows a different view point. At the top and at
the right there are big windows, and since the glass is not
visible with laser, most part of them are missing in the map.
Colored registered point clouds depicted in Fig. 5 shows that
there are not that much measurement points corresponding
to those areas, hence, lake of the windows are certainly the
problem of sensing system and have nothing to do with
the algorithm. However, it also creates hard cases for the
algorithm. Since missing a major wall because of the big
windows, prevents observing the corresponding corners which
can be very valuable features.

VII. CONCLUSION AND FUTURE WORK

Using the orthogonality constraint present in many man
made environments, a 3D-SLAM algorithm was presented
for indoor environments. Corners are proposed as high level
features which can reliably solve data association problem
within an iterative matching scenario. Experimental results
validated the proposed approach and showed the benefit of the
used constraint in the map precision and consistency. However,
in the experiments, less corners are observed than what was
expected. Studying the registered point clouds, it turns out to
be because of the blind spots of the sensing system at right
and left sides of the robot. Since the robot mostly should
see the corners at sides of it, the current installation does
not seem suitable. In the future work, the 3D sensing system
will be rotated 90 degrees with respect to the robot such that
the SICK rotates from right to left. This should increase the
observed corners and enhance the precision of the map. In
addition, automatic recognition of building structural elements
like walls, floor and ceiling is among our future work.
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[5] P. Jensfelt, H. Christensen, and G. Zunino. Integrated systems for
mapping and localization. In ICRA-02 SLAM Workshop (J. Leonard
and H. Durrant-Whyte, eds.), 2002.

[6] P. Kohlhepp, G. Bretthauer, M. Walther, and R. Dillmann. Using
orthogonal surface directions for autonomous 3d-exploration of indoor
environments. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, pages 3086–3092, Oct. 2006.

[7] P. Kohlhepp, P. Pozzo, M. Walther, and R. Dillmann. Sequential
3D-SLAM for mobile action planning. In Intelligent Robots and
Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, volume 1, pages 722–729, 28 Sept.-2 Oct. 2004.

[8] M. Montemerlo and S. Thrun. A multi-resolution pyramid for outdoor
robot terrain perception. In Proceedings of the AAAI National Confer-
ence on Artificial Intelligence, San Jose, CA, 2004. AAAI.

[9] P. Newman, J. Leonard, J.D. Tardos, and J. Neira. Explore and
return: Exprimental validation of real-time concurrent mapping and
localization. In Proceedings of the International Conference on Robotics
and Automation - ICRA, 2002.

[10] V. Nguyen, A. Harati, A. Martinelli, R. Siegwart, and N. Tomatis.
Orthogonal slam: a step toward lightweight indoor autonomous navi-
gation. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 5007–5012, Oct. 2006.

[11] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. Heuristic-
based laser scan matching for outdoor 6D SLAM. In Advances in Ar-
tificial Intelligence. KI 2005. Proceedings Springer LNAI. 28th Annual
German Conference on, volume 3698, pages 304–319, September 2005.

[12] D. Rodriguez-Losada, F. Matia, A. Jimenez, R. Galan, and G. Lacey.
Implementing map based navigation in guido, the robotic samrtwalker.
In Proceedings of the International Conference on Robotics and Au-
tomation - ICRA, 2005.

[13] S. Thrun. Exploring Artificial Intelligence in the New Millenium, chapter
Robotic mapping: A survey. Morgan Kaufmann, 2002.

[14] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping. In
Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE Interna-
tional Conference on, volume 1, pages 321–328vol.1, 24-28 April 2000.

[15] J. Weingarten. Feature-based 3D SLAM. PhD thesis, Swiss Federal
Institute of Technology in Lausanne, September 2006.

[16] J. Weingarten, G. Gruener, and R. Siegwart. A fast and robust 3D feature
extraction algorithm for structured environment reconstruction.

[17] J. Weingarten and R. Siegwart. 3D SLAM using planar segments. In
Robotics and Automation, 2006. Proceedings. ICRA ’06. 2006 IEEE
International Conference on, volume in press, 2006.

[18] O. Wulf, K.O. Arras, H.I. Christensen, and B. Wagner. 2D mapping of
cluttered indoor environments by means of 3D perception. In Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, volume 4, pages 4204–4209, Apr 26-May 1, 2004.

[19] Z. Zhang. Iterative point matching for registration of free-form curves
and surfaces. International Journal of Computer Vision, 13(2):119–152,
1994.


