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Abstract— Local feature matching has become a commonly
used method to compare images. For mobile robots, a reliable
method for comparing images can constitute a key component
for localization and loop closing tasks. In this paper, we address
the issues of outdoor appearance-based topological localization
for a mobile robot over time. Our data sets, each consisting of a
large number of panoramic images, have been acquired over
a period of nine months with large seasonal changes (snow-
covered ground, bare trees, autumn leaves, dense foliage, etc.).
Two different types of image feature algorithms, SIFT and the
more recent SURF, have been used to compare the images. We
show that two variants of SURF, called U-SURF and SURF-128,
outperform the other algorithms in terms of accuracy and speed.

Index Terms— Outdoor Environments, Topological Localiza-
tion, SIFT, SURF.

I. INTRODUCTION

Local feature matching has become an increasingly used
method for comparing images. Various methods have been
proposed. The Scale-Invariant Feature Transform (SIFT) by
Lowe [9] has, with its high accuracy and relatively low com-
putation time, become the de facto standard. Some attempts
of further improvements to the algorithm have been made (for
example PCA-SIFT by Ke and Sukthankar [8]). Perhaps the
most recent, promising approach is the Speeded Up Robust
Features (SURF) by Bay et al. [3], which has been shown
to yield comparable or better results to SIFT while having a
fraction of the computational cost [3, 2].

For mobile robots, reliable image matching can form the
basis for localization and loop closing detection. Local feature
algorithms have been shown to be a good choice for image
matching tasks on a mobile platform, as occlusions and
missing objects can be handled. In particular, SIFT applied
to panoramic images has been shown to give good results
in indoor environments [1, 5] and also to some extent in
outdoor environments [12]. However, outdoor environments
are very different from indoor environments. There are a
number of things that can alter the appearance of an outdoor
scene: lighting conditions, shadows, seasonal changes, etc.
All of these aspects makes image matching very difficult.1

Some attempts have been made to match outdoor images
from different seasons. Zhang and Kosecka [14] focus on

1In some cases even impossible, since a snow-covered field might not have
any features.

recognizing buildings in images, using a hierarchical matching
scheme where a “localized color histogram” is used to limit
the search in an image database, with a final localization
step based on SIFT feature matching. He et al. [7] also use
SIFT features, but employ learning over time to find “feature
prototypes” that can be used for localization.

In this paper, only local features extracted from panoramic
images will be used to perform topological localization. Sev-
eral other works rely on similar techniques to do topological
mapping and localization, for example Booij et al. [5], Sagues
et al. [11] and Valgren et al. [12, 13]. The most recent work
related to this paper is a comparative study for the localization
task in indoor environments, published by Murillo et al. [10],
where it is found that SURF outperforms SIFT because of its
high accuracy and lower computation time.

The rest of the paper is structured as follows. In Section
II, the SIFT and SURF algorithms are discussed briefly. In
Section III, the data sets used in the paper are described. In
Section IV, the experiments are outlined and in Section V the
results of the experiments are presented.

II. FEATURE DETECTORS AND DESCRIPTORS

Both SIFT and SURF contain detectors that find interest
points in an image. The interest point detectors for SIFT and
SURF work differently. However, the output is in both cases a
representation of the neighbourhood around an interest point
as a descriptor vector. The descriptors can then be compared,
or matched, to descriptors extracted from other images.

SIFT uses a descriptor of length 128. Depending on the
application, there are different matching strategies. A common
method, proposed by Lowe [9], is to compute the nearest
neighbour of a feature, and then check if the second closest
neighbour is further away than some threshold value. Other
strategies consider only the nearest neighbour if the distance
is smaller than a threshold, as in Zhang and Kosecka [15], or
compute only the approximate nearest neighbour by using a
kd-tree, as in Beis and Lowe [4].

SURF has several descriptor types of varying length. In this
paper, we use regular SURF (descriptor length 64), SURF-
128 (where the descriptor length has been doubled), and U-
SURF (where the rotation invariance of the interest points
have been left out, descriptor length is 64). U-SURF is useful
for matching images where the viewpoints are differing by
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Data set Number of images Main characteristics
A 131 No foliage. Winter, snow-covered ground.

Overcast.
B 80 Bright green foliage.

Bright sun and distinct shadows.
C 597 Deep green foliage. Varying cloud cover.

D1 250 Early fall, some yellow foliage.
Partly bright sun.

D2 195 Less leaves on trees, some on the ground.
Bright sun.

D3 291 Mostly yellow foliage, many leaves on the
ground. Overcast.

D4 264 Many trees without foliage. Bright setting
sun with some high clouds.

TABLE I
REFERENCE TABLE FOR THE DATA SETS. THE NUMBER OF IMAGES IN THE

DATA SETS ONLY INCLUDES THE OUTDOOR IMAGES USED IN THIS PAPER.

a translation and rotation in the plane (i.e. planar motion).
It should be noted that U-SURF is more sensitive to image
acquisition issues, such as the omnidirectional camera axis
not being perpendicular to the ground plane.

SURF can use the same matching scheme as SIFT, but
has one additional improvement. It includes the sign of the
Laplacian, i.e. it allows for a quick distinction between bright
features on a dark background and dark features on a bright
background. This allows for quicker feature matching than
SIFT, even in the case of SURF-128.

III. THE DATA SETS

Seven data sets were acquired over a period of nine months.
The data sets span a part of the campus at Örebro University,
in both indoor and outdoor locations. For the purpose of this
paper, all indoor images have been removed. The remaining
images form data sets, ranging from 80 images up to 597
images, see Table I.

A. Details about the data sets

Data set A was acquired on a cloudy day in February, with
bare trees and snow covered ground, see Figure 2 and 3.

Data set B was acquired on a warm May day, around noon,
with a clear blue sky, see Figure 2.

Data set C, which is also the largest of the data sets and
functions as our reference data set (it covers all places visited
in the other data sets, see Figure 1), was acquired during two
days in July, with a bright sky and varying cloud cover, see
Figure 2 and Figure 3.

Data sets D1, D2, D3 and D4 were all acquired during
October, with the purpose of capturing how the environment
changes during Autumn. They have varying lighting condi-
tions, and a different amount of leaves on the ground, see
Figure 2 and Figure 3.

The images were acquired every few meters; the distance
between images varies between the data sets. The data sets do
not all cover the same areas. For example, data set D1 does
not include Positions 1 and 2 in Figure 1.
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Fig. 1. Aerial image, illustrating the coverage of the data sets. The positions
have been acquired by adjusting odometry measurements to fit the map.
Approximate total path length for data set C is 1.1 km. Circles indicate the
approximate positions 1 to 5 used in Experiment 2.

B. Data set acquisition

The data sets were acquired by an ActivMedia P3-AT
robot (Figure 4) equipped with a standard consumer-grade
SLR digital camera (Canon EOS350D, 8 megapixels) with a
curved mirror from 0-360.com. This camera-mirror combina-
tion produces omnidirectional images that can be unwrapped
into high-resolution panoramic images by a simple polar-
to-Cartesian conversion. To reduce the number of detected
features, the images were resized to one third of the original
size, to about 800×240 pixels. The number of features for
each image in data set C is shown in Figure 5.

The odometry was stored for each run. The odometry was
adjusted by hand to produce the paths shown in Figure 1.

IV. EXPERIMENTS

Two experiments were designed to test the strength of SIFT
and SURF.

• In Experiment 1, 40 images were chosen at random from
each data set. These images were then matched against
the reference data set C. The number of feature matches
between the images was simply taken as a measure of
similarity; the image with the highest similarity was
considered to be the winner.2 Note that this corresponds
to global topological localization. The adjusted odometry
shown in Figure 1 was used to determine if the local-
ization was correctly performed or not; if the difference
in position between test image and the image of the
reference set with highest similarity was less than 10 m,

2For our images, the number of matches is small and there is little reason to
involve a more complicated measure of similarity. Other, more sophisticated
ways of determining similarity exist, for example by using the relation
between the number of matches and the total number of features. See also
the recent work by Cummins and Newman [6].
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Fig. 2. Data sets A, B, C, D2, D3 and D4. Position 1.

the localization was considered successful. A localization
was also deemed correct if a set of images shared the
highest score, and a correct image match was found in
the set.

• In Experiment 2, five viewpoints (Position 1 through 5 in
Figure 1) that occurred in several of the data sets were
compared using SIFT and SURF. The number of correct
correspondences and the total number of correspondences
were recorded for each viewpoint. In this experiment, we
rely on a human judge to determine the correctness of
individual feature matches.

The binaries published on the web sites for SIFT3 and
SURF4 were used to compute the feature descriptors. Both
SIFT and SURF utilize feature vectors, so the same code was
used to perform the image matching, with the exception that

3http://www.cs.ubc.ca/∼lowe/keypoints/
4http://www.vision.ee.ethz.ch/∼surf/

Fig. 3. Data sets A, C, D1, D2, D3 and D4. Position 5.

we introduced a check for the sign of the Laplacian for the
SURF features. A simple brute force, nearest-neighbour search
(using the Euclidean distance) was performed. Lowe found a
value of 0.8 for the relation between the nearest and second
nearest neighbour [9] to be suitable. In the paper by Bay et
al. [3], a value of 0.7 is used for the SURF descriptor.

Since it is not the purpose of this paper to tune a particular
matching scheme to our data sets, we have used both 0.7
and 0.8 as threshold in the experiments. However, it is likely
that the threshold for the nearest-neighbour matching might
influence the result; this is something that we leave for future
work.

While an epipolar constraint (as in Booij et al. [5]) could be
applied to improve the matching rate, this might give an unfair
advantage to one of the algorithms. In particular SURF might
suffer from this, since the SIFT keypoint detector returns many
more interest points in the images, see Figure 5.
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Fig. 4. The mobile robot platform, used to acquire the images used in this
paper. The omnidirectional camera can be seen in the top left part of the
image.
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Fig. 5. The number of interest points for reference data set C. Note that the
different versions of SURF use the same feature detector and therefore have
the same number of interest points.

V. RESULTS

A. Experiment 1

The charts in Figure 6 and 7 show the results from Ex-
periment 1, using thresholds of 0.7 and 0.8, respectively. A
striking result is that feature matching alone cannot, in general,
be used to perform correct single image localization when
the data sets are acquired over a longer period of time. The
localization rate is too low – even the best algorithm does
not reach higher than about 40% in one of the cases. On the
other hand, this is perhaps not surprising, since the dynamics
of outdoor environments sometimes can leave even humans
lost.

Another interesting result is that SIFT performs worst for
two of the data sets, and never gives the highest localization
rate (exclusively).

SURF-128 outperforms the other algorithms, giving the
highest localization rate for all data sets except data set B.

It is notable that the low localization rates of data set B

Fig. 6. Result for Experiment 1. 40 random images from each data set were
localized with respect to the reference data set C. The bar chart shows the
localization rate, using a threshold of 0.7.

Fig. 7. Result for Experiment 1. 40 random images from each data set were
localized with respect to the reference data set C. The bar chart shows the
localization rate, using a threshold of 0.8.

and D2 coincide with a qualitative change in the appearance
of the environment; both data set B and D2 were acquired in
direct sun light that casts long shadows and causes the white
buildings to be very bright, see Figure 2.

B. Experiment 2

The chart matrices shown in Figures 8 through 12 show the
results from Experiment 2 using a threshold of 0.7 (results by
using a threshold of 0.8 are omitted for space reasons, but are
qualitatively the same). Again, data sets B and D2 have a low
number of matches. It is also, as one might expect, fairly hard
to match the snow-covered data set A to the other data sets.

Data sets C, D3 and D4 were in general easy to match,
while data set D2 was the hardest to match. Again, the weather
conditions (visible sun, overcast, etc.) seem to be a very
important factor. It is of interest that Position 5 (see Figure 3),
which should be a very difficult case since it is a parking lot
with very few stable, salient features, is not much harder to
match than the other cases. For Position 5, U-SURF performs
best with the highest number of correct matches.

It is hard to decide which algorithm performs best in
Experiment 2. SIFT gives a larger number of matches (perhaps
because the number of detected interest points is higher), but
more matches are also wrong. With a percentage of only
67% correct matches, it is clearly the worst of the algorithms.
Again, SURF-128 comes out on shared first position with 85%
correct matches. However, SURF-128 finds fewer matches
than the other algorithms. In this regard, U-SURF that has
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Algorithm Total matches Total correct matches Percentage correct
SIFT 1222 824 67%

SURF 598 473 79%
U-SURF 760 648 85%

SURF-128 531 452 85%

TABLE II
TOTAL NUMBER OF MATCHES FOR EXPERIMENT 2, WITH THRESHOLD 0.7.
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Fig. 8. Result for Experiment 2, position 1. The same approximate viewpoint
was selected from several data sets, and the matches were evaluated by
a human judge. Each bar chart shows the matches between two data sets
(indicated by labels on rows/columns). In the charts, darker color indicates
correct matches, brighter color indicates total number of matches.

a high number of both found and correct matches will be the
winner. See Table II.

C. Time consumption

The computational cost for SIFT is much greater than
SURF.

Figure 13 shows the computation time required for the
detection of features for the different algorithms. U-SURF is
fastest, followed by SURF, SURF-128 and finally SIFT, which
is nearly three times as slow.

Figure 14 shows the computation time required to do feature
matching for the different algorithms. The times required for
the SURF variants are all at around 0.25 seconds, while SIFT
varies from 0.5 to 2 seconds (with a mean of about 1.1
seconds).

VI. CONCLUSIONS

In this paper, we have investigated how local feature
algorithms can cope with large outdoor environments that
change over the year. The results from our experiments can
be summarized as follows:

• It is not, with the current algorithms, possible to do single
panoramic image localization based only on appearance
in large outdoor environments with seasonal changes.

• SURF-128 outperforms the other algorithms for these
data sets, at least in terms of localization. SURF-128
also has the highest percentage of correct feature matches
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Fig. 9. Result for Experiment 2, position 2.
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Fig. 10. Result for Experiment 2, position 3.
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Fig. 11. Result for Experiment 2, position 4.
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Fig. 12. Result for Experiment 2, position 5.
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Fig. 13. The time required to compute the descriptors for 200 random images
chosen from all data sets.

when comparing images taken during different seasons,
but also returns the lowest number of matches.

• U-SURF had severe problems with the data set containing
snow (A) for the localization task, but otherwise performs
nearly as well as SURF-128.

• For our data sets, standard SURF has approximately the
same performance as SIFT.

None of the SURF variants give results considerable worse
than SIFT, yet SURF has a considerably lower computation
time. It should therefore be clear that SURF is better suited for
the task of localization in outdoor environments – but this is
only when one considers the matching technique used in this
paper. It might be of interest to apply an epipolar constraint
(using RANSAC, for example) which might give SIFT – with
its higher number of features – back a slight advantage. In
fact, we believe that while SURF might be useful for doing
“coarse” topological localization, there are cases when SURF
does not return a sufficiently high number of correspondences
in order to allow precise pose estimation. In these cases, SIFT,
which in general returns a higher number of correspondences,
might be a better choice.

Further work involves expanding the experiments, in part to
further investigate the impact of the thresholds, but in particu-
lar to understand why a particular local feature algorithm can
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Fig. 14. The time required to match 100 random image pairs chosen from
all data sets.

successfully handle a case for which another fails. It would
also be of interest to see if there is a way to successfully
handle the cases with bright sun and distinct shadows.
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