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Abstract— The future of robots, as our companions is depen-
dent on their ability to understand, interpret and represent the
environment in a human compatible manner. Towards this aim,
the presented work is part of an attempt to create a hierarchical
probabilistic concept-oriented representation of space, based on
objects. Specifically, this work details efforts taken towards
learning and generating concepts and attempts to classify places
using the concepts gleaned. Inference is based on the number of
occurrences of various objects. The approach is based on learning
from exemplars, clustering and the use of Bayesian network
classifiers. Such a conceptualization and the representation that
results thereof would be useful for enabling robots to be more
cognizant of their surroundings and yet, compatible to us.
Experiments on conceptualization and place classification are
reported. Thus, the theme of the work is - conceptualization
and classification for representation and spatial cognition.

I. INTRODUCTION

Robot mapping is a well researched problem, however,
with many very interesting challenges yet to be solved. An
excellent and fairly comprehensive survey of robot mapping
has been presented in [18]. Robot maps can be generally
classified into three categories - metric ([2], [1]), topological
([41, [14]) and hybrid ([17], [19]). The one similarity between
all these representations is that all of them are navigation-
oriented. Thus, while these maps are certainly useful in getting
robots to move around, they fail to encode much of the spatial
semantics in the environment. This results in robots having
a very modest level of spatial awareness. The focus of this
work is to address this deficiency. Further, a robot may use
such representations to perform spatial cognition to different
extents. While (metric) localization and place recognition (is
this my office ?) have been well explored ([1], [14] & [20]) in
the research community, place classification (is this an office
?) is a more general problem and warrants the formation of
a conceptual model of the place. The work reported here
addresses this issue in the overall context of improving the
semantic content of state-of-the-art robot representations.

Typically, humans seem to perceive space in terms of ob-
jects, states and descriptions, relationships etc. This seems both
intuitive and is also validated through user studies that were
conducted in [22]. Thus, a cognitive spatial representation,
for a mobile robot, could be expected to encode similar
information. The work reported in [21] attempted to create
such a representation by encoding typical household objects
and doors within a hierarchical probabilistic framework. It
used a SIFT [10] based object recognition system and a door

detection system based on lines extracted from range scans.
It also proposed a first conceptualization of different places,
based on the objects that were observed. Spatial cognition
was demonstrated in two ways - place classification using the
models learnt and place recognition using the probabilistic
relative object graph representation (a graph encoding ob-
jects and 3D relative spatial information between them). The
conceptualization and place-classification that was performed
were preliminary steps in the direction. The classification
was based on a very simplistic Naive Bayesian Classifier
(NBC) [5] that did not learn from negative exemplars. The
likelihood formulation in the conceptualization was not useful
for handling multiple occurrences of objects. It also did not use
any explicit relationship between the number of occurrences of
an object and the concept. Classification was done only on the
basis of the evidence that was present and did not consider that
which was absent, the latter is very significant information.

The approach presented in this work attempts to address
these issues in the larger context of proposing a consistent
Bayesian framework for the incorporation of spatial semantics.
Further, [21] represented spatial semantics through only the
presence of objects. This report aims at taking this one step
further - by forming meaningful semantic concepts, based on
the objects. For instance, consider a kitchen that is composed
of a storage-space, a cooking-space and a dining-space, each
of which are in turn composed of several objects pertinent to
it. This work enables a robot exploring the kitchen to actually
understand (and internally represent) that there is an area to
dine, to cook and to store things in the place, and that the
place is a kitchen because of this.

II. RELATED WORK

Many works either inspire or are closely related to the work
presented here. In the artificial intelligence (AI) community,
the problem of generalization has been well addressed. The
work [24] provides a good overview of different generalization
strategies that exist and how they relate to each other. The
approach presented in this work can be likened to a data driven
approach which requires a set of positive / negative exemplars
(or a “teacher”) to learn from. The problem of conceptual
clustering is another closely related and well established
research area. Perhaps, the best known example of this, is
the COBWEB system [6]. This system attempted to perform
unsupervised incremental probabilistic conceptual clustering.



The problem, approach and the methodology of generating
and using probabilities is different from that presented here.
Among more recent works, the aspects dealt with in this
work, bear similarities with [15]. This work presented a
generative probabilistic model for classification and clustering
of relational data. The model is based on previous work by
the authors on Probabilistic Relational Models. The model
incorporates a large set of dependencies between the latent
variables representing the entities of the data; it used an
approximate Expectation-Maximization algorithm to learn the
parameters of the underlying model and the inference was
based on Belief Propagation. Another closely related work, to
that presented here, is reported in [16]. It provides a Bayesian
approach to learning concepts from a few positive exemplars.
The specific example demonstrated is that of learning axis-
parallel rectangles in multi-dimensional space.

Recent works in robotics that are relevant in the context
of this work include [7] and [12]. The former used an Al
based reasoning engine that specified rules for each concept
based on an ontology. The latter used the object occurrences
to differentiate between similar structured rooms - this was
done by integrating the object cues within an AdaBoost
framework. The state-of-the-art in robot place classification
typically relies on object occurrence cues, used in a logic or
rule based framework, possibly with a predefined ontology. A
recent contribution that works along these lines is detailed in
[11]. The objective of this work is to formulate a principled
Bayesian approach in order to incorporate semantic concepts
in robot spatial representations and enable robots to reason
about their surroundings. The scenario envisioned is that of a
robot being taught different concepts by its human user.

A concept that provides for the basis of the approach
presented here is that of the Bayesian network classifiers- in
particular, the Naive Bayesian Classifier (NBC). It is well
known that NBC’s (generative classifiers) although being
unarguably simplistic models that make strong assumptions,
are able to successfully compete with any of the other state-
of-the-art (discriminative) classifiers [13]. The work [3] gives
a nice overview on the different kinds of Bayesian network
classifiers that exist and also elicits on ways to learn them. The
approach presented in this report also draws on the vast amount
of work done in the area of clustering, a good survey of which
is presented in [8]. Additionally, this work attempts to be fully
probabilistic and is grounded on a Bayesian Programming
methodology, as described in [9].

The contribution of this work is the formulation of a sound
Bayesian methodology to enable a robot to conceptualize and
classify its environment as it explores it. The representation
that is formed as a result of the conceptualization, encodes a
greater level of semantic information (concepts) than before
and enables a robot to be more spatially aware of its surround-
ings. Also, the representation would be totally compatible with
humans (demonstrated in [22]).

III. APPROACH

A. Overview

Figure 1 illustrates the overall approach that is being
pursued. In [21], a key idea was to enhance robots spatial

Fig. 1.  (a) General approach - A robot uses the sensory information it
perceives to identify high level features such as objects, doors etc. These
objects are grouped into abstractions along two dimensions - spatial and
semantic. Along the semantic dimension, objects are clustered into groups
so as to capture the spatial semantics. Along the spatial dimension, places are
formed as a collection of groups of objects. Spatial abstractions are primarily
perceptual formations (occurrence of walls, doors etc.) whereas semantic
or functional abstractions are primarily conceptual formations (similarity of
purpose / functionality ; spatial arrangement). The representation is a single
hierarchy composed of sensory information being mapped to increasingly
abstract concepts. (b) An example scenario - The figure depicts a typical
office setting. The approach proposed in this work would would enable
a robot to recognize various objects, cluster the respective objects into
meaningful semantic entities such as a meeting-space and a work-space and
even understand that the place is an office because of the presence of a place
to work and one to conduct meetings.

representation by changing the feature set from the now
common lines, corners etc. to higher level features such as
objects and doors. It established the link between the robots
sensors, the objects and the places. This work attempts to build
on that idea by asking the question - given a set of objects,
how can a robot be made to gain a deeper understanding of its
surroundings ? It attempts to form groups in accordance with
the hierarchy shown. The objective is a greater incorporation
and usage of spatial semantics, thereby producing a concept
oriented (thus more semantic) representation of space. In this
report specifically, two questions are addressed - (1) How can
a robot build a conceptual model of a place ? and (2) How
can a robot understand that it is in a particular type of place.
The former refers to the problem of conceptualization and the
latter, the problem of place classification.

In accordance with figure 1(a), objects are incrementally
grouped into clusters which are conceptualized as functional
groupings (concepts or groups in this report). These groups
provide for meaningful semantics that the robot can glean
as it explores a place. The robot can then use the groups
to infer about or classify the place. Inference is based on
the Naive Bayes Classifier (NBC). The key improvement lies
in the creation of an intermediate level of semantic under-
standing, which certainly increases semantic content in the
representation but may also improve understanding at higher
levels of abstraction. The following sub-sections detail the
clustering methodology used, the conceptual model, and the
conceptualization process.

B. On the clustering methodology

The conceptualization process to actually infer the concepts
works on clusters of objects. Different clustering approaches
inspired by [8] were attempted. Most were based on nearest



neighbor approach as distance between objects was a reason-
able metric to cluster them. The objective, however, was to also
make use of the semantic information captured in the concept
models learnt by the robot. Thus, a nearest neighbor approach
in conjunction with a Maximum-a-posteriori (MAP) estimate
of the best case concept (for the incoming object) was the
basis of the clustering method that has finally been used in this
work. The former used the distance to the center of the cluster
as the metric whereas the latter was the concept that had the
maximum posterior belief given the occurrence of the single
object (it is computed by learning, from the training data, the
likelihood of observing the object, given the occurrence of
the concept). The behavior of the algorithm can be briefly
summarized in three steps in the same order of precedence
- (1) choose the nearest cluster that has the same concept
as the best case concept suggested for the incoming object,
(2) choose the nearest cluster that is conceptually dissimilar
but “acceptably likely” with respect to the best case concept
and (3) create a new cluster with the incoming object of type
suggested by the best case concept. More details on this can
be obtained from [23].

C. The Concept Model and Conceptualization
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Equation 1 shows the joint probability distribution (JPD) of
the model used in this work. Given a set of objects (0;), the
equation computes the belief in a concept given number of
occurrences (m;) respectively, of each of the objects. Every
X, in the equation denotes an o; = m; for the corresponding
object; ¢ denotes the concept that is to be inferred. The
inference is principled on the Bayes rule that interprets this in
terms of the prior belief in the concept and the likelihoods of
observing the specific number of occurrences of the respective
objects, given the concept. Given that a NBC is the underlying
model, the object occurrences are assumed to be independent
of each other, given the concept. The same method is also
used to infer about the place given the occurrence of one or
more concepts.

The conceptual model that is used for the inference, encodes
the likelihood of the occurrence of a specific number (over a
range, in the cluster under consideration) of a certain object
towards the formation of a particular concept. It is worth
noting that encoding and using the number of occurrences of
various objects rather than just their individual occurrences is a
more informative method of distinguishing between concepts.
For instance, chairs and tables are common to both a work-
space and a dining-space, however, the number of occurrences
of each of them is one distinguishing factor. For a set of
concepts ¢;, a set of objects o; and a range of possible number
of occurrences m;, the training process uses a collection
of positive and negative concept exemplars to compute the
likelihoods as shown in equation 2.
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Fig. 2. The Bayesian program that summarizes the conceptualization and
classification processes. It is characterized by the specification of the variables
of the system, the decomposition of the joint probability distribution (JPD),
the parametric forms of each of the components of the JPD, a specification
of how the parameters of the distributions are learnt and finally, the question
that is to be answered by the system. ‘0’ denotes a ‘false’ and ‘1’ denotes
a ‘true’. 6 = 0.001 to accurately reflect on the training data, it ensures that
a previously unseen event is an unknown event (belief = 0.5) and not one
that never occurs. my; and my; are the number of occurrences of the case
0; = m; in negative and positive exemplars respectively. ny and n; are the
number of negative and positive exemplars respectively. The same process
can be applied to infer about places given the concepts observed.

where the numerator encodes the number of occurrences of
the particular case o; = m;, for every object over a range
of occurrences, and the denominator encodes the number of
positive or negative exemplars of the concept. The terms J
and 2 x 0 ensure that an event that has not been encountered
during prior training, is only something that the robot has
no prior information about (belief = 0.50) and not something
that may never occur. The value of § decides the reliance on
the training data. In the experiments reported in this work, §
takes a very low value of 0.001 so as to reflect the training
data accurately. The likelihoods were also limited to taking
values between upper and lower bounds in order to avoid ‘un-
interesting’ inferences that could be produced in the limiting
cases.

A Bayesian program is a systematic formulation for the
creation and usage of Bayesian models such as the one used
in this work. Elaborate details on the concept, its structure
and its semantics are available in [9]. The Bayesian program
used to do the learning and inference process is summarized
as shown in figure 2. The complete probabilistic model for the
system, including the parameters, likelihoods and the question
to be answered, are depicted in it.



IV. EXPERIMENTS
A. Overview

Experiments were conducted on a dataset that included
physically measured object and coordinate information from
11 offices and 8 kitchens. The office data was represented
in terms of three concepts (apart from some free-standing
objects). These were work-space, storage-space and meeting-
space. The kitchen data was described in terms of ten concepts,
namely cooking-space, garbage-space, dining-space, bottle-
group, glass-group, box-group, mug-group, bag-group, poster-
group and book-group. Concepts used in this work represent
the manner in which the places were understood by the au-
thors; they are similar to those observed in [22]. The approach
however is not ontology-specific. Developing a standardized
ontology that could perhaps enable high-level communication
between robots is beyond the scope of this work.

Two instances each, of office and kitchen data were used
only for testing and the others for both training and testing.
Training was performed to learn the unknown parameters
shown in figure 2, for each concept. Each concept was
trained with its set of positive exemplars and against all other
exemplars as negative ones. Testing and evaluation involved
the comparison of each of the 991 objects (total number
in 19 places) with the corresponding objects in the training
input. Conceptualization resulted in four outcomes. An object
may have been conceptualized correctly, i.e. it belongs to the
correct conceptual group with respect to the training data;
it may belong to a group that has not been classified (due
to insufficient evidence or multiple competing hypotheses
inhibiting a clear inference); it could be a free-standing object
in training, that has been assigned a label; finally, the object
may belong to a group that has been incorrectly classified.
Figures 3 and 4 respectively depict the outcome of clustering,
conceptualization and place classification of an office and a
kitchen.

B. Evaluating the clustering algorithm

TABLE I
EVALUATION OF THE CLUSTERING ALGORITHM

Outcome Cases | Percentage (%)
Singleton 10 1.0091
Fused or Broken 304 30.6761
Correct 677 68.3148

Table I summarizes the evaluation of the clustering process.
Correct cases correspond to objects which belonged to the
respective clusters, in comparison with the training data. A
significant number of clusters were either fused or broken with
others. In most cases, this resulted in for instance, the fusion
of two adjacent work-spaces or the inclusion of one or more
objects of one cluster in another one. Few cases did occur,
where objects characteristic of one concept were clustered with
those of another. A clear conceptualization would be unlikely
in these cases. A few objects were separated from the rest and
formed clusters by themselves - these were regarded as being
inaccurate with respect to the training input (where only large

objects such as cupboards were treated as singleton clusters).
The number of such cases however, was quite low.

C. Evaluating the conceptualization algorithm

TABLE I
EVALUATION OF THE CONCEPTUALIZATION ALGORITHM

Outcome Cases | % (of classified) | % (of total)

Incorrect 168 19.3772 16.9526
Not classified 124 - 12.5126
Free Object 7 0.8074 0.7064

Correct 692 79.8155 69.8285

The outcome of the conceptualization experiment is de-
scribed in table II. This experiment used the algorithm ex-
actly as described in the approach. The outcomes correspond
respectively to those detailed in IV-A. Clearly, the number of
incorrect and unclassified cases, although not insignificant, is
quite small in comparison to the number of correct cases.

The algorithm was also evaluated in the context of place
classification. All of the eleven offices and eight kitchens
were tested against the models learnt. The concepts that were
inferred in the previous step were used to infer about the
place. The algorithm performed perfectly, in that the place
classification accuracy was 100%.

D. Improving the generalization capability

As observed till now, the training phase resulted in the
successful learning of conceptual models for both abstract
concepts (groups) and places. However, generalization was
limited to the exemplars observed and assumed that the
exemplars were void of any uncertainty. The former aspect
is quite significant as, for instance, if in training, four chairs
were always observed in a dining-space, the occurrence of
three chairs (a very plausible scenario) would probably render
the algorithm being unable to comprehend the group. In such
a scenario, the algorithm should infer the possible existence
of a dining-space, albeit with a greater uncertainty. Thus, the
algorithm should be able to generalize in a manner such that
it is able to handle at least conceptually “adjacent” cases to
what it has observed before. Also, given that a user is expected
to teach the robot in an on-line learning scenario (and not
use some predefined data-base of models), it would only be
appropriate to consider the training input as being uncertain.

Two techniques were attempted towards these aims - (1) a
smoothing of the concept models, based on a moving-average
algorithm and (2) the use of a Gaussian uncertainty in the
training process - so that every training input affects not only
P(o; = m;]c) but also its neighbors. Only the results of the
latter approach are reported here. The Gaussian uncertainty
incorporates a fixed uncertainty in training input; the choice
of the Gaussian noise to be used would depend on the local
circumstances and the aspects that need to be modeled. In
the experiments presented here, N(0.0,0.4472) was used in
order to consider only the number of occurrences o; = m;,
0o, = m; — 1 and o, = m; + 1 respectively (i.e. only
the immediate neighbors). Results of the conceptualization



process with the new models are given in table III - they were
very encouraging. Even in the context of place classification
- they produced perfect results, identifying all 11 offices and
8 kitchens correctly.

TABLE III
EVALUATION OF THE MODIFIED CONCEPTUALIZATION ALGORITHM

Outcome Cases | % (of classified) | % (of total)

Incorrect 175 18.5381 17.6589
Not classified 47 - 4.7427
Free Object 9 0.9534 0.9082

Correct 760 80.5085 76.6902

E. Discussion

While the results from both models are quite promising, it
is worth noting the effect of adding the Gaussian uncertainty
in training process. From the earlier results, it could be
inferred that the modified (Gaussian) conceptual models have
managed to successfully classify several of the previously
unclassified cases while maintaining or marginally improving
the previously obtained classification accuracies - both for
concepts (groups) and for places. This indicated a clear
improvement in generalization capability of the algorithm.
Further, the incorporation of the Gaussian uncertainty enables
the algorithm to be more realistic, by accounting for possible
sources of uncertainty in the training phase.

V. CONCLUSION

A Bayesian approach to conceptualization and classification
of space for mobile robots was presented. The suggested
algorithm was based on the Naive Bayes Classifier (NBC) and
was implemented using a clustering mechanism and a sound
Bayesian Programming methodology. The results vindicated
the use of the number of occurrences of various objects
towards concept formation; the addition of the Gaussian uncer-
tainty clearly improved the generalization capability of the al-
gorithm and made it more realistic in being able to account for
uncertain training data. The algorithm incrementally formed
conceptual groups of objects - these represented semantic
(functional) groupings that were aimed at capturing spatial
semantics; further, they were used for classifying places. The
generated concepts increase the amount of semantic infor-
mation contained in a robot’s spatial representation. They
also endow the robot with the capability of being more
spatially aware machines, capable of reasoning about spatial
semantics. Future work will focus on adding spatial semantics
and understanding the system’s response to dynamic situations.
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Fig. 4. Outcome of the conceptualization and classification processes for a kitchen. The depiction is a top-down view. In general, the 3D map would have
the objects more to the left / right parts of the image, at higher-levels / more-on-the-inside as compared to those that are located approximately at the center
of the figure (which was the walking space in the kitchen). The rectangles depict the cabinets containing various objects within it in different rows. Each
cluster of objects is identified by a color and a number in parenthesis. Note that ‘n X object’ is used to denote n occurrences of an object. On the right are
the outcomes as obtained using the two cases - with only the basic model that uses the number of occurrences and with the improved (Gaussian) model.
Each cluster is classified as being one of 13 concepts used in this work. Note that the glasses and mugs in cluster 3 are fused with the storage space and are
not individual clusters or not clustered with say, the bottle-group. This is because the clustering depends on the distance threshold, the prior probability of
the occurrence of the concept and the likelihood of observing the object in an instance of the concept. In the trained model, storage-spaces occurred more
frequently than bottle-groups. More details on the clustering mechanism can be obtained from [23].



