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Are you still following me?
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Abstract— In this paper, the people tracking system of a mobile
shopping assistant based on a SCITOS-G5 platform is explained
in detail. The robot has two tasks, to find people requiring
assistance and to guide a user to a target without losing contact.
For that purpose, a probabilistic model and a Bayesian update
scheme have been developed, where data of various sensory
systems is merged asynchronously. Experimental results of the
tracking behavior during several guided tours in a home store
demonstrate the reliability of our approach.

Index Terms— Person Tracking, Human Robot Interaction,
Robot Assistant

I. INTRODUCTION

Robust detection and tracking of people in the surroundings
of mobile service robots plays a central role in many applica-
tions. Especially for our long-term research project PERSES
(PERsonal SErvice System) [3], this knowledge is essential to
allow an intuitional interaction. The aim of our project was
to develop an interactive mobile shopping assistant that can
autonomously guide its user, a customer, to desired articles
within a home store. For this purpose, the robot patrols in the
home store and offers service to customers looking around.
Once a person has started to interact with the robot, this user
has to be observed during a guided tour, to recognize when
the user stops or wants to continue the tour.

Depending on the specific application scenario that inte-
grates a people detection and tracking task, different ap-
proaches are prevalent. Typically the utilization of visual cues
for face detection and tracking is a preferred way, but for our
application tracking objects in image space is not sufficient.
The goal is to track people in the two dimensional world space,
allowing to estimate their distance to the robot and to infer
about their behavior and movement trajectories.

Therefore, in [4] we introduced a probabilistic approach
for tracking people‘s positions in a robot centered (r, ϕ)-
coordinate system, which realizes an equitable fusion of dif-
ferent sensory systems. The main improvement there was to
overcome the disadvantages of single sensor or hierarchical
tracking systems, often used on mobile robots. TOURBOT
[7] or GRACE [10], for example, use a laser-based system
for detecting people in the robot’s surroundings. In spite of
recent improvements on the classification of laser range scans
as proposed by [1], in an extremely dynamic and cluttered
environment like the home store, the reliability of exclusively
laser-based systems is not sufficient. To increase the reliability,
in hierarchical approaches visual information is often used
for verification of hypotheses generated by the laser [9]. The
combination of laser with visual and additionally auditory
cues is presented e.g. in [2]. The essential drawback of most
of these hierarchical approaches is the sequential integration
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Fig. 1. The interactive robot platform SCITOS A5, produced by MetraLabs
GmbH. Shown are the ranges of the different sensor systems: a SonyRPU
camera at the top yielding a pano ramic and a frontal image, a laser range
scanner, and 24 sonar sensors at the bottom.

of the sensory cues. These systems typically fail if the laser
range finder yields no information. Besides, for a mobile robot
which has to deal with moving people, faces will not always
be perceivable, hence verification could fail too.

Due to these findings, for the application of the shopping
assistant, we concentrated on the improvement of the already
existing sensor fusion method [4], which additionally has the
advantage that the perceivable area is not limited by the
range of one sensor. In [5] the algorithm of [4] had been
already improved by means of representing the position of
persons in an Euclidean world space, allowing to generate
movement trajectories and to estimate their velocity. For the
application presented here, the model had to be extended
by components needed for making decisions on the robot’s
behavior. Furthermore, the use of a Kalman Filter-like update
mechanism instead of the former covariance intersection and
the introduction of a motion model for interaction partners
did improve the robustness in difficult environments, like the
home store.

The rest of the paper is structured as follows: First, our
Platform SCITOS A5 is introduced and the mission in the
home store is described. Afterwards, the utilized sensory cues
will be shown in detail, before the probabilistic model and
the Bayesian aggregation scheme is explained. Finally, exper-
imental results demonstrate the effectiveness of our system.

II. ROBOT SYSTEM AND ITS APPLICATION

The robot, which has been developed for the application
as a shopping assistant, is a SCITOS A5 (see Fig. 1). For
navigation and interaction purposes the system is equipped
with different sensors. First, and most important is an omnidi-
rectional camera mounted on the top of the head. Due to the
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integrated hardware transformation, we are able to get both a
panoramic image (720x150 pixels) and high resolution frontal
image (720x362 pixels), which can be panned around 360o.
Besides this main sensor, the robot is equipped with a set of
24 sonar sensors at the bottom, which is used for obstacle
detection and localization. Because of their diffuse character-
istics, these sensors do not allow to distinguish objects from
people, but they cover the whole 360o around the robot. The
last sensor available for person detection is the laser range
finder HOKUYO URG-04-LX mounted in front direction at a
height of 35cm. Additionally, the robot has a touch display, a
sound system, and a 6 DOF head for interaction.

The aim of the robot in the home store is to assist customers
during their purchase. Therefore, at first, people, who seem to
need help have to be found, while the system is patrolling.
Indications for the interest of customers to interact with the
robot are given, when a person is standing still or facing the
robot for a while. Once a dialog started, the user has the option
to be guided to a specific article. During this guided tour, the
robot has to observe the user to detect if the person stops or
keeps on following the robot.

III. SYSTEM ARCHITECTURE

As mentioned above, different sensory cues are used for
estimating the positions of people nearby the robot. The main
source of information are the images and the occupancy map
of the local environment, integrating all the range information
from sonar and laser (see Fig.2). Due to the noisy characteris-
tics of the sonars, the direct utilization of their measurements
is not useful.

The centered column of Fig.2 shows the preprocessing
modules, which will be explained in more detail in the
next sections. Similar to our former approach [4], each of
the cues provides Gaussian distributed hypotheses Hs =
(N (µs,Cs) , ws) of persons’ positions each with an individ-
ual reliability weight ws. Here N is the Gaussian with mean
µs and covariance matrix Cs. The improved probabilistic user
model at the right side of Fig.2 is using these observations
to estimate the users’ positions and further properties as
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Fig. 2. Architecture of the multimodal tracker, left: the sources of informa-
tion, middle: preprocessing systems, delivering Gaussian hypotheses, right:
probabilistic model and update mechanism.

described below. In extension to the algorithm of [4, 5], a user
motion model, further sources of information, and a Kalman
Filter-based update rule have been introduced. In our fusion
approach, the different sensory systems are absolutely equi-
table. So, their advantages and shortcomings can complement
each other.

A. Getting hypotheses from occupancy maps

One disadvantage of visual cues is their weak accuracy in
distance information. Therefore, range measuring sensors are
essential for tracking in world coordinates. Because of the
limited scan sector of the laser range finder and the noisy
sonars, we decided to extend our former system by integrating
the raw range measurements in an occupancy gridmap, repre-
senting the current local surroundings of the robot. Once an
occupancy map is estimated, we are able to calculate a virtual
local 360o range scan Rl (n) at the robot’s position, which is
representing the current situation with an acceptable certainty.
This scan is acquired using 72 virtual sensors each scanning
a 5o sector. Objects in that virtual scan then are classified
as person or background. For that purpose, a second scan
Rg (n) is extracted from a global occupancy map, which has
been learned before and is also used for self-localization. By
comparing these two scans, hypotheses of non-static moveable
objects can be generated. In a dynamic environment, like a
home store, the probability for these detections to be a person
is relatively weak, such that the hypotheses resulting from this
cue have a low weight ws.

As a result of the mean global localization error of about
25cm [6], it is necessary to evaluate the differences in the
scans Rl (n) and Rg (n) as follows: If the range in the local
scan is shorter than the range in the global scan, it is a hint for
a dynamic object. For each direction n with Rl (n) < Rg (n),
the minimum distance d (n) of the endpoint of the scanray in
the local map to all the endpoints in the global scan is calcu-
lated. For that, the ranges Rl (n) and Rg (n) are transformed
back into a world position, where Euclidean distances can be
derived. The probability P (n = obj) for a direction n to show
an object results from a simple ramp function with maximum
value Pmax above a distance threshold dth.

P (n = obj) =



0 , ifRl (n) > Rg (n)∨
d (n) < dmin

Pmax(d(n)−dmin)
dth−dmin

, ifRl (n) < Rg (n)∧
d (n) ∈ [dmin, dth]

Pmax , ifRl (n) < Rg (n)∧
d (n) > dth

(1)
Each connected sequence of a P (n = obj) > 0 afterwards

is transformed into a Gaussian hypothesis for the probabilistic
tracker by estimating the center and variances of the points
defined by Rl (n ∈ sector). The weight ws of this hypothesis
is taken from the average P (n = obj) in the sector. Here, the
question arises, why not to compare the maps directly? Due to
the fact that the robot can not sense the area behind an object,
the local map is only valid inside the range of a scan taken
from robot’s center. Using a virtual scan helps suppressing
false positive hypotheses resulting from occluded objects.
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B. Leg hypotheses based on laser scans

In contrast to the sonar sensors, the laser scan has a
high resolution and a better reliability. As mentioned above,
different projects, which use leg detection in laser scans, make
an effort to get a high precision for the classification as, e.g.
proposed in [1]. Due to the integration of further sensors,
we do not depend on very robust leg detection. Therefore, a
simple heuristic is used for generating hypotheses. First, steps
in the range scan Rlaser (ϕ) of more than 7cm are detected
to define segments between them. Then each segment has to
fulfill different criteria to be accepted as a possible leg.

1) segments must have a length of at least 8cm and at most
20cm,

2) the standard deviation of Rlaser of all values inside a
sector must be limited by 4cm,

Given the set of possible legs in 2D world coordinates, pairs
of legs are found, if the Euclidean distance between any two
legs is less than 0.5m. For each of these pairs a Gaussian
observation hypothesis is generated at the average position of
the legs. Due to the cluttered environment, the fix reliability
ws of observing a person this way is chosen quite low.

C. Skin color based hypotheses

A popular feature extracted from images is skin color. Many
models for skin color are known [14] but the most serious
problem of using color in a dynamic environment is the
changing illumination. For the purpose of white balancing the
used camera (see Fig. 1) is equipped with a white reference,
which is the best known method to cope with changing light.

For classification of color, an empirical tabular model in
normalized rg-color space has been built up by labeling faces
in several hundred images captured in the home store. By
binning the rg-plane into 64x64 cells the ratio of face pixels
to nonface pixels, falling into a cell, gives a probability
P (rg = skin).

To find and track clusters of skin color in the panoramic
image I (ϕ, z) with a vertical image size Z, a set of particle
filters is used. The concept introduced in [13] allows to track
multi-modal distributions of skin color in the image resulting
in a set of disjoint hypotheses for people’s skin regions.

The color tracker works as follows: Each of the individual
particle filters is representing the distribution of the position of
a skin color blob by a set of 100 particles pn = (ϕn, zn, πn).
Then, on each image the following cycle is iterated ten times.

1) Weight sampling: Using the tabular skin color model,
new weights πn result from rg color at the particle
position in the image.

πn = P (Irg(ϕn, zn) = skin) (2)

2) Resampling: A set of next generation particles is chosen
from the old one according to the distribution of πn.

3) Motion model: A random walk model is used. For each
particle a postion offset ∆ϕn ∝ N

(
0, (18o)2

)
and

∆zn ∝ N
(
0, (0.04 Z)2

)
is drawn.

After that, each of the particle filters should have converged to
one cluster of skin color. If two particle sets concentrate on the

same cluster, one set is initialized equally distributed over the
whole image in order to find other possible spots of skin color.
To generate observation hypotheses in 2D world coordinates,
the average direction ϕ̄ and a typical distance to the robot
rfix = 1.5m are used to specify the mean of the Gaussian
hypotheses. Furthermore, the variance in radial direction is
chosen fix to (1.5m)2 and the variance in tangential direction
to the robot is estimated from the particle’s variance in ϕ. The
average weight π̄ of the particles of the respective filter defines
the weight ws for the new hypothesis.

D. Motion based hypotheses

A reliable feature of living objects is motion, which there-
fore is chosen as a further cue. Because proper motion on a
mobile robot is making motion classification difficult, this is
only useful, while the robot is not moving. To overcome the
time consuming computation of optical flow, which is often
used for motion detection, a difference image based approach
is realized. Further speedup is reached by summing up the
pixels in an image column to get a reduced one dimensional
signal ¯Irgb(ϕ) =

∑
z∈[0.3 Z,0.7 Z] Irgb(ϕ, z). The difference

of ¯Irgb(ϕ) on two succeeding images gives a reliable hint
for motion. Due to the averaging process, pixel noise is of
low influence, a threshold of 8 gray values yields to stable
classification of moving sections over ϕ. The set of difference
sections is postprocessed by a morphological closing operation
to get connected intervals of moving people, which afterwards
can be transformed into Gaussian hypotheses, if a minimum
size is exceeded.

In contrast to the color hypotheses, the estimation of dis-
tance of moving objects is difficult, due to the unknown size
and speed of objects. For instance, near a window, a moving
car outside may lead to a similar motion detection as a human
near to the robot. For handling that problem, the distance
needed for the Gaussian hypothesis is taken from the range
scan in the local occupancy map. If this distance is above a
threshold of 2.5m the hypothesis is discarded.

E. Face detection based hypotheses

A promising hint for persons in the surrounding of the robot
as well as their direction of sight, is a frontal face in the image.
For finding faces, the well known Viola and Jones detector [12]
is applied. Unfortunately, faces in the omnidirectional image
are pretty small, which restricts detection to the frontal image
only. To cover the whole 360o area, this magnified image is
panned around periodically, until a face is found and tracking
commences. For getting more information about the user, the
face image is analyzed by means of ICA feature projection
[13]. Besides the features for identifying people, a likelihood
for an image to be a face is estimated, which is useful for
validating the face detections and yielding a reliability ws. For
generation of Gaussian observation hypotheses Hs, besides the
given direction, a distance is needed again. The fixed size of
faces (15cm, empirical determined) is utilized to triangulate
the distance with a deviation of about 40cm.

Concluding, we point to the fact, that different sensory
systems are chosen to complement each other. We have range
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Fig. 3. Two components of the probabilistic user model are shown. Each
one has a position x and a velocity v which are modelled by Gaussians in
2D world coordinates. Further, for each hypothesis the probability of being a
human w, the need for interaction I , and the probability of being the current
dialog partner D are modeled by discrete distributions over {0, 1}

sensors useful for observing the position of people with a
high accuracy, but with a high false positive rate. Therefore
these inputs will have a high influence on the position of a
hypothesis, but a weak one on the belief of representing a
person at all. On the other side, there are the vision-based
observations, each with a bad spatial accuracy, but with a better
selectivity. Thus, the main task of skin color is to generate
hypotheses at a distinct direction to the robot. Later, they
can be refined in their distance by the range sensors. Finally,
motion and face detections are useful to prove the hypothesis
to be a person with a high reliability. Face detections give a
further hint, that the person did notice the robot, because only
frontal faces are found.

All these observations Hs from the various subsystems
are used to keep a probabilistic model up to date, which is
explained in the following section.

IV. PROBABILISTIC TRACKING

A. Modelling the persons

A probabilistic model for people in the surroundings of the
robot is used, as illustrated in Fig. 3. There is a varying number
of hypothesis Hk = (xk,vk, Ik, Dk, wk), where the position
xk ∝ N (µk,Ck) and the velocity vk ∝ N (νk,V k) are
modeled by Gaussians in 2D world coordinates with mean
µk and covariance matrix Ck respectively νk and V k. The
probability for the object in the model to be a human at all is
described by wk. Additionally, for each hypothesis k the need
for interaction I and the probability D of being the user who
is in dialog with the robot are estimated internally. I is used
to decide whether to offer service to a detected person while
searching for new users. The position of the hypothesis with
maximum D and wk above a threshold, determines whether
to wait for the user, or to continue a guiding tour to a given
target point in the store.

Given the model, in the following its update and estimation
process is shown. As illustrated in Fig.4, there are four
processes modifying the model independently.

set of hypotheses

Motion Model

Observation
update

Plausibility
update

Internal
update

asynchronously periodically

periodically

periodically /
asynchronously

Fig. 4. The probabilistic model consisting of a set of hypotheses, is
independently modified by the different, processes (blue boxes)

B. Data association and observation update

The sensory systems and so the preprocessing cues are
providing new observations Hs = (N (µs,Cs) , ws) asyn-
chronously with a sensor specific update rate tsensor. Thus,
on each new observation the estimation of the model can
be improved, after predicting the current state with the user
motion model which is described in section IV-E.

Before updating the parameters of a single hypothesis the
data association problem has to be solved. That means, by
which one of the K hypotheses, a new observation is probably
generated from? In literature for that difficulty, Joint Probabil-
ity Data Association Filters [8] have been applied with a high
computational requirement. Following our approach from [4],
we concentrated on a simple distance based heuristics, which
leads to a modified Expectation-Maximization algorithm.

Based on the Mahalanobis-distance d (Hs,Hk) between
observation distribution Hs and the model hypothesis Hk, the
affiliation P (k) of the observation to a certain component k
is defined using a threshold function.

P (k) ∝
{

0 , if d (Hs,Hk) > dmax
1

d(Hs,Hk) , else
(3)

If no component has a probability larger than zero, a new
hypothesis is created at the observed position. In the other
case P (k) is used for updating the position xk, after a
normalization step. Further on, the person probability wk (see
Fig. 3) is adjusted proportionately.

The update of the position xk ∝ N (µk,Ck) for all
components with P (k) > 0 is done using a Kalman Filter-like
update rule (see eqs. 4-6), resulting in the pointwise product
of the old position distribution and the observation distribution
following the typical scheme of Bayes Filters [11]. Controlling
the influence of the new observation, K is called the Kalman
gain, while the affiliation P (k) regards the data association
problem.

K = P (k) Ck (Ck + Cs)
−1 (4)

µnew
k = µk + K (µs − µk) (5)

Cnew
k = (I −K) Ck (6)

The probability wk of being a human, can hardly be handled
in a Bayesian manner, because there are only observations
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proofing the presence of a person. Due to the deficit of
non-person observations, a simpler method is realized for
estimating wk. During the internal update (see Fig.4), the
probability is decreased over time with a decay rate of wdecay

to realize a disappearance of person hypotheses not observed
any longer. To compensate this decay, the sensor specific
probability ws is normalized by the update rate ts of the
respective sensor, and then added to the weight considering
the affiliation to component k. If wnew

k exceeds 1, it is clipped.

wnew
k = wk − wdecay ∆t + ws wdecay ts P (k) (7)

Here ∆t is the time elapsed since the last update.
By means of sensor reliabilities ws < 1 it is guaranteed,

that only observations supported by two or more sensors can
increase their person probability wk and, therefore, the deficits
of single sensors can be compensated.

C. Internal update

As already mentioned, besides the asynchronous observa-
tion update, an internal update is periodically applied in order
to update the vk, Dk and Ik components of the model.
Furthermore, to limit the number of hypotheses contained by
the model, hypotheses with a probability wk reaching zero are
deleted.

Given the current position for a person, the velocity can
be updated. Because the position may jump within a short
time span, which is caused by the different sensors, a longer
interval for speed estimation is used. For that, the history of
each position, i.e. the former estimations µt−l

k , . . . ,µt
k, are

stored in a queue. Using this information, the velocity vk ∝
N (νk,V k) can be estimated recursively as follows.

νt
k = α νt−1

k + (1− α) 1
τ

∑
δt

(
µt

k − µt−δt
k

)
(8)

V t
k = α V t−1

k + 1
τ

∑
δt

(
µt

k − µt−δt
k

) (
µt

k − µt−δt
k

)T
(9)

Here δt runs over the history queue from one to two seconds
in the past, and τ is the number of elements considered.

Afterwards, the probability for the need for interaction Ik is
estimated. A person, standing still for a while and facing the
robot, is supposed to require assistance. Another indication
for interest in interaction is given, if a person is actively
approaching to the robot and its touch display on the back
(see Fig. 1). Following these rules, the interaction probability
Ik will be increased i) if a face detection has been observed
or ii) if a person is approaching the area in the back of the
robot. In the same manner as updating the person probability
wk, a constant decay Idecay is subtracted from Ik periodically.
The value is increased with each face detection, indicating
that the person faces the robot. Because face detection is not
as reliable as expected, the main increment for Ik must be
generated by the second variant, the approaching behavior.
Therefore, people standing nearby the robot, will get an
increment depending on their distance d to the interaction side,
which is a point in front of the touch display.

As a last component of the model, the probability Dk of a
person to be the current dialog partner is estimated. It would
be promising to identify the person, may be using the face
analysis results, but experiments showed that this feature is not

yet as robust as needed. The user has to face the robot and a
proper model for his appearance has to exist. Both are points of
failure, thus the decision on Dk up to now is made on position
only. Because the user’s presence is of chief interest during a
guiding tour, a region dependent on the robot’s movements is
defined. A movable angular sector, limited by the absolute
angles αl and αr in world coordinates, is defined, where
the borders will follow the robot’s rotation delayed, which
is realizing that if the robot is turning, the possible user’s
position is more flexible. Inside the cone, between αl and αr,
the probability of being the current dialog user is increased
and outside it is decreased using an identical mechanism as
already described for the wk values. Based on the new Ik

and Dk values, the robot now can easily select its behavior
appropriately.

D. Plausibility update

Due to the structured environment, sometimes hypotheses
will emerge inside the goods shelves. For example, due to
skin-colored and leg-like structures in the goods shelves, their
probability wk to be a person, can grow wrongly. Knowing
about the structure of the environment, false-positive hypothe-
ses laying inside the obstacles in the global occupancy map
can be supposed to be not a person, which yields an enormous
improvement compared to the original tracking system [5].
Therefore, periodically the average occupancy value ok at the
position xk is estimated by sampling the Gaussian distribution
of the hypothesis and looking up the occupancy values in
the global map. Following the principles described above, the
person probability wk then is updated according to:

wnew
k = wk − wmap ok tmap (10)

Whereas wmap is a decay factor and tmap is the time since
the last map check.

E. Motion update

In order to apply the Bayes filter approach completely,
before each observation update, the state of each hypothesis
(its position xk) has to be predicted using a process model.
And even if no new observation updates occur, the person’s
position is changing and, therefore, a state prediction using a
motion model needs to be done periodically.

For a person primarily a random walk model is applied
in order to increase the variances of position and speed.
Therefore, a time dependent constant is added to covariance
matrices Ck and V k. If a person is observed over a longer
timespan, additionally their velocity is used to predict the
position by simply adding νk ∆t to the mean position µk.
Here ∆t is the timespan since the last motion update took
place.

During the guiding tour of the robot, a modified motion
model can help to find people following the robot. To prevent
the hypotheses in the model to be missed by new observations,
what will lead to the introduction of a new hypothesis without
the already estimated parameters, the robot’s speed is used
to predict an expected position for obedient users. That way,
the tracker filters those hypotheses, which follow a similar



6

trajectory to the one of the robot. This new feature helps
to decrease the misassociations drastically when the robot is
moving fast.

Cnew
k = Ck + s ∆t I + fv V k (11)

µnew
k = µk + fv ∆t νk + frvrobot ∆t (12)

fv = 1− |vr|
vmax

r
(13)

In the equations, vr is the velocity vector of the robot and
fr and fv denote the rate of influence for the robot’s and the
person’s estimated speed, while s denotes the speed of the
random walk component.

V. EXPERIMENTAL RESULTS

The current form of the model evolved over years. It has
been applied on different platforms each with an individual set
of sensors. Also a variety of other applications for a tracking
system similar to the presented one exist.

Keeping in mind the desired application as a shopping
assistant, differing from previous work, where the tracking of
the exact positions of people was in the focus of attention,
here the ability of the model to provide the robot with
crucial information for decision making is essential. Therefore,
instead of ground truth tracking results, an application oriented
test has been chosen. In order to evaluate the ability to track
a customer during a guided tour, the robot had to give a tour,
while different people followed it in an individual distance. In
Fig. 5 three of these runs are shown. The plots visualize the
continuity of the tracking result for different average distances.
During the tour with a length of about 50m, the robot lost
contact only two times in five trials, where the people where
asked to keep a distance of about 1m to 1.5m, which is a
normal displacement for people really doing a shopping tour.

In usability tests, where 155 people have been interviewed,
most of the people were pleased with the behavior of the robot.
59 of the 155 users did a guided tour, and only 3 of them
criticized, that the robot did stop and lost them too often.

In a second experiment, the number of false positive hy-
potheses was evaluated. Here, the robot should interrupt its
tour if a customer stops following. Therefore, at the marked
point S in Fig. 5, the experimenter stopped while the robot
continued its guiding tour. In all of these trials, the robot
detected the disappearance of the user correctly after at least
5m.

VI. CONCLUSIONS AND OUTLOOK

Summing up, in this work the current user tracking system
of SCITOS as a mobile shopping assistant is described in
detail.

The idea of fusion of different sensory cues for people
tracking has been taken up and enhanced significantly. The
probabilistic model has been extended by a motion model al-
lowing a better prediction and filtering of persons’ hypotheses
according to their trajectories. Further, abstract components
modelling the relevant properties of a user, namely the need
for assistance by the robot and the fact of being the user at all,
are modeled. Finally, the shopping assistant realizes a fairly

Fig. 5. Exemplary tracking results of a person instructed to follow the robot
(black path) in different distances, top: 2m, middle: 1.5m, bottom: stopping
at point S, color is showing the probability of being the dialog user (green),
left: estimated distance of the robot to the user over time; right: map of our
office building

natural interaction behavior, that seems very pleasant to its
users.

In future work, we try to extend the probabilistic model
by personal properties describing the current user like facial
features and color histograms, allowing to identify the user if
contact was lost to him.
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