
1

Parallelization of Scan Matching for

Robotic 3D Mapping
Andreas Nüchter

Institute of Computer Science, University of Osnabrück, Osnabrück, Germany

nuechter@informatik.uni-osnabrueck.de

Abstract— Robotic 3D Mapping of environments is computa-
tionally expensive, since 3D scanners sample the environment
with many data points. In addition, the solution space grows
exponentially with the additional degrees of freedom needed to
represent the robot pose. Mapping environments in 3D must
regard six degrees of freedom to characterize the robot pose.
This paper extends our solution to the 3D mapping problem by
parallelization. The availability of multi-core processors as well
as efficient programming schemes as OpenMP permit the parallel
execution of robotics task with on-board means.

Index Terms— 3D scan matching, Iterative Closest Point Al-
gorithm, GraphSLAM, Parallel Algorithms, Simultaneous Local-
ization and Mapping, OpenMP.

I. INTRODUCTION

Methods for solving the simultaneous localization and map-

ping (SLAM) problem are a key scientific issue in mobile

robotics research. SLAM solutions are important in providing

mobile systems with the ability to operate with real autonomy.

Many mobile robots are nowadays equipped with a 3D laser

scanner to gather information about the environment. Multiple

3D scans are necessary to digitalize environments without

occlusions. To create a correct and consistent model, the scans

have to be merged in one coordinate system. This initial

registration is usually done with the well-known Iterative

Closest Points (ICP) algorithm [4]. In all sequential strategies,

where each scan is matched to some previous one, small

errors add up to global inconsistencies. These errors are due to

imprecise measurements and small registration errors and can

never be avoided. SLAM algorithms that use information about

closed loops help diminish these effects. So, Lu and Milios

proposed a probabilistic scan matching algorithm for solving

the simultaneous localization and mapping (LUM) [15]. In

recent work, these algorithms are applied to 3D laser scan

mapping [5], [21]

3D scan matching approaches to SLAM tend to be compu-

tationally expensive due to several reasons: First, the amount

of data: A 3D laser range finder scans the environment with

a large number of samples. Second, the additional three DoF

result in an exponentially larger solution space. The solution is

computationally more complex. New hardware developments

help reduce these computational costs. In a popular formu-

lation of Moore’s law, one could state that the number of

transistors on integrated circuits doubles every 18 months. This

is emphasized by the observation of the appearance of dual-

core and quad-core CPUs in the consumer market. These chips

multiply the number of computing units whereas the increase

of the clock rate of the chips seams to stop due to thermal

issues.

This paper presents a variation of 3D scan matching algo-

rithms, namely the parallel Iterative Closest Points (pICP) al-

gorithm and the parallel Lu / Milios SLAM approach (pLUM).

The algorithms have been optimized for execution on a shared

memory machine with p processors, i.e., for quad and dual-

core processors. The application to robotics is obvious: Several

mobile robots are already controlled by dual core notebooks.

OpenMP is used to program the dual-core processors in a

multi threaded fashion. To this end, this paper focuses on the

implementation details of scan matching for our SLAM front-

end.

The paper is structured as follows: After a brief description

of the state of the art, we describe our 3D scan matching

algorithm and our SLAM approach (section II and III). The

parallelization of these two algorithms are introduced in sec-

tion IV and V. In Section VI the experiments and results on

various data sets are presented starting with comments on the

load balancing issue. Section VII concludes.

A. Current Trends in Processor Technology

In April of 2005, Intel announced the Intel Pentium pro-

cessor Extreme Edition, featuring an Intel dual-core proces-

sor. An Intel dual-core processor-based PC enables a higher

throughput and simultaneous computing using a multi-core ar-

chitecture. Intel dual-core CPUs supporting Hyper-Threading

Technology can process four software threads simultaneously

by using more efficiently resources that otherwise may sit

idle [18]. Since multi-core processors represent a major evo-

lution in computing technology, Intel competitors have dual

and quad core processors, too.

B. 3D Metric Robotic Mapping – State of the Art

Metrical maps represent explicit distances of the environ-

ment. These maps are either 2D, usually an upright projection,

or 3D, i.e., a volumetric environment map. State of the art

for 2D metric maps are probabilistic methods, where the

robot has a probabilistic motion and perception model. SLAM

in well-defined, planar indoor environments is considered

solved, a survey of these techniques is presented by Thrun in

[22]. Furthermore, SLAM approaches can be classified by the

number of DoF of the robot pose. A 3D pose estimate contains

the (x, y)-coordinate and a rotation θ, whereas a 6D pose

estimate considers all degrees of freedom a rigid mobile robot

2

can have, i.e., the (x, y, z)-coordinate and the roll, yaw and

pitch angles. This emerging research topic is called 6D SLAM,

In previous work, we presented the mobile robot Kurt3D that

uses a tiltable 3D laser range finder [20] in a stop-scan-match-

go-process to create a 3D map of the environment by merging

several 3D scans into one coordinate system [17], [21]. Here

online map generation, i.e., the map is available right after the

robot run without extra map computing time, was possible,

through using pairwise scan matching with an ICP algorithm.

The speed-ups have been realized using data reduction and

approximate k-d tree search. Similar experiments have been

made by Newman et al. [16]. A recent trend in laser based 6D

SLAM is to overcome stop-and go fashion of scan acquisition

by rotating or pitching the scanner while moving [6], [24],

[27].

Another trend in SLAM research is to apply probabilistic

methods to 3D mapping. Katz et al. use a probabilistic notion

of ICP scan matching [12]. Weingarten et al. [26] and Cole

et al. [6] use extended Kalman filter to the mapping problem.

We extend this state of the art by a GraphSLAM method. A

similar approach was used in [23]. However, their algorithm is

not practical due to the reported computational requirements.

Furthermore Frese presented an extension of his treemap

SLAM algorithm to six degrees of freedom, which however

covers the least-square estimation core and no actual scan-data

processing [7].

II. THE ICP ALGORITHM

The ICP Algorithm was developed by Besl and McKay

[4] and is usually used to register two given point sets

in a common coordinate system. The algorithm calculates

iteratively the registration. In each iteration step, the algorithm

selects the closest points as correspondences and calculates

the transformation, i.e., rotation and translation (R, t), for

minimizing the equation

E(R, t) =

Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||
2
, (1)

where Nm and Nd, are the number of points in the model set

M and data set D, respectively, and wji are the weights for

a point match. The weights are assigned as follows: wji = 1,

if mi is the closest point to dj , wji = 0 otherwise. Eq. (1) is

reduced to

E(R, t) ∝
1

N

N∑

i=1

||mi − (Rdi + t)||
2
, (2)

with N =
∑Nm

i=1

∑Nd

j=1 wi,j , since the correspondence matrix

can be represented by a vector v containing the point pairs,

i.e., v = ((d1,mf(d1)), (d2,mf(d2)), . . . , (dNd
,mf(dNd

))),
with f(x) the search function returning the closest point.

The assumption is that in the last iteration step the point

correspondences, thus the vector of point pairs, are correct.

Besl and McKay show that the iteration terminates in a

minimum [4]. Note: Normally, implementations of ICP would

use a maximal distance for closest points to handle partially

overlapping point sets. In this case the proof in [4] does no

longer hold, since the number of points as well as the value

of E(R, t) might increase after applying a transformation.

The time complexity of the algorithm described above is

dominated by the time for determining the closest points

(brute force search O(n2) for 3D scans of n points). Several

enhancements have been proposed, like the commonly used

k-d trees [3], [4].

Four methods are available to calculate the transformation

in each ICP iteration: A SVD based method of Arun et al.

[2], a quaternion method of Horn [10], an algorithm using or-

thonormal matrices of Horn et al. [11] and a calculation based

on dual quaternions of Walker et al. [25]. These algorithms

show similar performance and stability concerning noisy data

[14]. The difficulty of the minimization problem is to enforce

the orthonormality of matrix R.

In the following, we give a brief overview of the SVD-based

algorithm. The first step of the computation is to decouple the

calculation of the rotation R from the translation t using the

centroids of the points belonging to the matching, i.e., for all

points in vector v:

cm =
1

N

N∑

i=1

mi, cd =
1

N

N∑

i=1

dj (3)

and

M ′ ={m′

i = mi − cm}1,...,N , (4)

D′ ={d′

i = di − cd}1,...,N . (5)

After replacing (3), (4) and (5) in the error function, E(R, t)
eq. (2) becomes:

E(R, t) ∝
1

N

N∑

i=1

||m′

i − Rd
′

i − (t − cm + Rcd)
︸ ︷︷ ︸

=t̃

||
2

=
1

N

N∑

i=1

||m′

i − Rd
′

i||
2

(6a)

−
2

N
t̃ ·

N∑

i=1

(m′

i − Rd
′

i) (6b)

+
1

N

N∑

i=1

∣
∣
∣
∣t̃

∣
∣
∣
∣
2
. (6c)

In order to minimize the sum above, all terms have to be

minimized. The second sum (6b) is zero, since all values refer

to centroid. The third part (6c) has its minimum for t̃ = 0 or

t = cm − Rcd. (7)

Therefore the algorithm has to minimize only the first term,

and the error function is expressed in terms of the rotation

only:

E(R, t) ∝

N∑

i=1

||m′

i − Rd
′

i||
2
. (8)

Theorem: The optimal rotation is calculated by R = VU
T .

Herby the matrices V and U are derived by the singular value

3

decomposition H = UΛV
T of a correlation matrix H. This

3 × 3 matrix H is given by

H =

N∑

i=1

m
′T
i d

′

i =

N∑

i=1

(mi − cm)(di − cd)
T (9)

=





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 ,

with Sxx =
∑N

i=1 m′

ixd′ix, Sxy =
∑N

i=1 m′

ixd′iy, The

analogous algorithm is derived directly from this theorem.

III. LU MILIOS STYLE GRAPHSLAM

To solve SLAM, a 6D graph optimization algorithm for

global relaxation based on the method of Lu and Milios [15] is

employed, namely Lu and Milios style SLAM (LUM). Details

of the 6D optimization, i.e., how the matrices have to be filled,

can be found in [5]:

Given a network with n + 1 nodes X0, ..., Xn representing

the poses V0, ..., Vn, and the directed edges Di,j , we aim to

estimate all poses optimally to build a consistent map of the

environment. For simplicity, we make the approximation, that

the measurement equation is linear, i.e.,

Di,j = Xi − Xj

An error function is formed such that minimization results in

improved pose estimations:

W =
∑

(i,j)

(Di,j − D̄i,j)
T C−1

i,j (Di,j − D̄i,j). (10)

where D̄i,j = Di,j + ∆Di,j models random Gaussian noise

added to the unknown exact pose Di,j . The covariance ma-

trices Ci,j describing the pose relations in the network are

computed, based on the paired points of the ICP algorithm.

The error function Eq. (10) has a quadratic form and is

therefore solved in closed form by Cholesky decomposition

in the order of O(n3) for n poses (n ≪ N). The algorithm

optimizes Eq. (10) gradually by iterating the following five

steps [5]:

1) Compute the point correspondences (n closest points)

for any link (i, j) in the given graph.

2) Calculate the measurement vector D̄ij and its covariance

Cij .

3) From all D̄ij and Cij form a linear system GX = B.

4) Solve for X

5) Update the poses and their covariances.

IV. THE PARALLEL ICP ALGORITHM

The basic work for parallelization of the ICP algorithm

(pICP) was done by by Langis et al. [13]. pICP showed com-

pelling results on a cluster with p processors for registration

of large data sets. The basic idea is to divide the data set

D into p parts and to send this part together with the whole

model set M to the child processes that compute concurrently

the expensive closest point queries. Afterwards, these points

correspondences are transmitted back to the parent, that uses

it for computing the transformation by minimizing Eq. (2).

Then this transformation is sent to the childs, which transform

the data set D. The process is iterated until the minimum of

Eq. (2) is reached.

The parallelization scheme for ICP uses a lot of bandwidth

for transmitting corresponding points. Thus, Langis et al. [13]

proposed several enhancements to the parallel method. One

of these improvements is avoiding the transfer of the corre-

sponding points. The computation of the correlation matrix

H Eq. (9) is parallelized and partially executed by the child

processes, i.e., Eq. (9) is transformed s follows

H =
N∑

i=1

(mi − cm)(di − cd)
T

=

p
∑

i=1

Ni∑

j=1

(mi,j − cm)(di,j − cd)
T , (11)

where Ni denotes the number of points of child i, cmi
, cdi

the centroid of points of child i, and (mi,j ,di,j) the jth

corresponding point of child i. Furthermore, for Eq. 11 holds

H =

p
∑

i=1

Ni∑

j=1

(

(mi,j − cmi
+ (cmi

− cm))

(di,j − cdi
+ (cdi

− cd))
T
)

=

p
∑

i=1

(
Hi + Ni(cmi

− cm)(cdi
− cd)T

)
(12)

where, Hi =

Ni∑

j=1

(mi,j − cmi
)(di,j − cdi

)T (13)

Therefore, after the point correspondences are parallely com-

puted Eq. 12 and 13 form the algorithm for computing the

correlation matrix H in a parallel fashion. The centroids cm

and cd (cf. Eq. 3) are also computed from these intermediate

results, i.e.,

cm =
1

N

p
∑

i=1

Nicmi
, cd =

1

N

p
∑

i=1

Nicdj

Finally, after the parent has collected the vectors cmi
, cdi

and

the matrix Hi from the childs, it is possible to compute the

transformation (R, t) to align the point sets.

A. Parallelization of k-d tree search

This paper considers an OpenMP implementation for the

pICP algorithm, that is a shared memory architecture with p
processors or threads (symmetric multiprocessing). Therefore,

there is no need to create p copies of the model set M .

However the search is executed in parallel using parallel k-

d tree search.

1) k-d trees: k-d trees are a generalization of binary search

trees. Every node represents a partition of a point set to the two

successor nodes. The root represents the whole point cloud

and the leaves provide a complete disjunct partition of the

points. These leaves are called buckets. Furthermore, every

node contains the limits of the represented point set.

4

2) Parallel Construction of k-d trees: Since the k-d tree

partitions the point set in two disjunct subsets, the construction

is easily partitioned by executing the two recursive cases in

parallel.

3) Searching k-d trees: k-d trees are searched recursively. A

given 3D point needs to be compared with the separating plane

in order to decide on which side the search must continue.

This procedure is executed until the leaves are reached. There,

the algorithm has to evaluate all bucket points. However, the

closest point may be in a different bucket, iff the distance to

the limits is smaller than the one to the closest point in the

bucket. In this case backtracking has to be performed. The test

is known as ball-within-bounds test [3], [8], [9].
4) Parallel Searching k-d trees: In the pICP algorithm

several search requests have to be handled by the k-d tree

at the same time. Efficient implementations of k-d tree search

algorithms use static, i.e., global variables to save the current

closest point. This current point is first derived by depth

first search and then updated in the backtracking case. When

executing the search with parallelism p copies of this point

must be created.

B. Implementation Details

Most high performance processors insert a cache buffer

between slow memory and the high speed registers of the

CPU. If several threads use unique data elements on the same

cache line for read and write, then so-called false sharing might

occur. If one of the threads writes to a cache line, the same

cache line referenced by the second thread is invalidated of

the cache. Any new references to data in this cache line by

the second thread results in a cache miss and the data has to

be loaded again from memory. To avoid false sharings, we pad

each thread’s data element to ensure that elements owned by

different threads all lie on separate cache lines as follows:

class KDParams {

public:

/** pointer to the closest point.

* size = 4 bytes of 32 bit machines

*/

double *closest;

/** distance to the closest point.

* size = 8 bytes

*/

double closest_d2;

/** pointer to the point,

* size = 4 bytes of 32 bit machines

*/

double *p;

/** expand to 128 bytes to avoid

* false-sharing, 16 bytes from above

* + 28*4 bytes = 128 bytes */

int padding[28];

};

In our search tree these padded parameters are included using

memory alignment:

class KDtree {

// [snip]

public:

__declspec (align(16)) \

static KDParams params[MAX_OPENMP_NUM_THREADS];

};

V. PARALLEL LU MILIOS BASED GRAPHSLAM

There are several steps of the Lu Milios based GraphSLAM

algorithm that might be executed in a parallel fashion, resulting

in the pLUM algorithm. The point correspondences for any

link (i, j) in the given graph are computed in parallel (step

1) as well as the computation of the measurement vector

D̄ij (step 2) and the formation of the linear system (step

3). In principle also the last step, i.e., solving the linear

system of equations, can be executed in a parallel fashion

by the parallel Cholesky decomposition [19]. However, this

algorithm is mainly used in solving very large problems in

the supercomputing research field.

Two possible strategies exist for parallelizing step 1: First,

for all links the computation of the correspondence search

proceed as the unimproved pICP case in section IV. The

drawback of this strategy is that the closest point pairs have to

be transmitted back to the parent thread. The more advanced

strategy is to compute for the n given links, the correspon-

dences on the p processors. In this strategy several k-d trees

of different data sets have to be constructed, maintained and

searched in a parallel fashion. However, it turns out that the

parallelization scheme in section IV-A and IV-B also work in

this pLUM variant. Since the global variables of the parallel

k-d tree depend on the thread number, several data sets are

processed at the same time. The search function of every k-

d tree that is associated with a data set stores its local values

separately.

VI. EXPERIMENTS AND RESULTS

A. Load Balancing

The computations carried out in a parallel fashion have to

be scheduled to the p processors. The goal of balancing the

load for the processors is to maximize the gained speed-up

aiming to reach the optimal runtime of ts/p, with ts the time

for executing scan matching on a single processors.

The scheduling of parallel point searching for pICP is

done by OpenMP altering the for statement. Every thread

determines its thread number and uses this information for

the parallel k-d tree search. Prior splitting of the data set

avoids the determination of the thread number for every point.

Splitting the data set has to be done in a randomized fashion

to ensure load balancing. It turned out that this requires more

time than the determination of the thread number in every

iteration. Similar arguments apply for pLUM.

B. Matching Laser Scans Acquired with Kurt3D

In this experiment we use the exploration robot Kurt3D.

Fig. 1 shows the robot that is equipped with a tiltable SICK

laser range finder in a natural outdoor environment. The 3D

laser range finder [20] is built on the basis of a SICK 2D range

finder by extension with a mount and a small servomotor.

Resolution can be adjusted at expense of scanning time;

scanning is done in a stop-scan-go fashion. All computations

have been carried out be Kurt3D that is equipped with a

Panasonic Toughbook CF-74 with an Intel Core Duo-T2400,

1.83 GHz.

We made two experiments with Kurt3D. First we drove a

closed loop in our office environment and acquired 11 3D

scan with 85000 data points each. Fig. 2 shows the office

scene. Table I shows the results. The overall running time

5

Fig. 1. Left: Kurt3D. Right: The 3D laser scanner is built of 2D laser scanner
and a servo motor step-rotating the scanner.

TABLE I

RUNNING TIMES IN MILLISECONDS FOR SINGLE THREAD COMPUTATION

VS. MULTI-THREAD COMPUTATION. THE FIRST ROWS REPRESENT THE

SPEED-UP FOR PURE ICP AND LUM COMPUTATIONS ON AN INTEL CORE

DUO-T2400.

algorithm one thread two threads four threads

ICP 12688 9821 9750

LUM 703 610 453

total 13391 10431 10203

was reduced 76.2%. Using four instead of two threads yields

a slight improvement, probably due to improved scheduling

issues. Using more than four threads did not lead to an

additional advances.

The second experiment was performed in Dagstuhl castle,

where we acquired a 3D model of interior of the new building

wing (cf. Fig. 3) containing 83 3D scans with the same

resolution as in the previous experiment. The overall time

spent by the 3D mapping algorithms, i.e., ICP and LUM was

112141 ms using single thread execution, 78141 ms using two

threads and 70218 ms using four threads.

C. Matching of Continously Acquired 3D Scans

Wulf et al. presented a rotating 3D scanner in [27]. In the

following experiment we processed 468 3D scans containing

approximately 20000 3D points per scans. These scan where

Fig. 2. Left: Kurt3D. Right: 3D scans on an office environment. Right: Top
view of the map representing one small closed loop.

Fig. 3. Left: 3D view of the new wing of Dagstuhl castle. Right: Top view.

Fig. 4. Top: Trajectory and map of the campus of Leibniz Universität
Hannover. Bottom: Two detailed 3D views. Bottom left: modelled skyscraper.
Bottom right: building with tree in front.

matched with ICP and since there were several loops we

applied LUM after each loop detection. Loop detection is done

using a simple distance criterion: If two estimated robot poses

Vi and Vj are close enough, i.e., their distance falls below a

threshold (here: 5 meters) then we assume these scans overlap

and are matchable. The overall time spent by the 3D mapping

algorithms, was reduced from 4526 s to 3420 s using four

threads. Fig. 4 shows the final map (top view) and two detailed

views.

D. Experiments with a High Resolution Data Set

In the last experiment, we tested the proposed paralleliza-

tion on high resolution 3D scans provided by RIEGL Laser

Measurement Systems GmbH [1]. For mapping we use 11 3D

scans containing over 300000 data point each, covering a very

large area. Table II shows the performance on this data set,

Fig. 5 shows the final map, two detailed views with photos

of the scene. The most gain is achieved by parallelization of

ICP, i.e., up to 48.2%. The total speed-up on this data set is

23.7%. Besides processing these scans on a dual-core T2400,

we tried our algorithms on Osnabrück’s compute server with

4 dual-core Itanium-II processors and achieved tremendous

speed-ups, up to 70%. Measurements are not available since

the server is operated in multi-user mode.

VII. SUMMARY AND OUTLOOK

This paper has presented an approach to parallelize two

well know mapping algorithms, namely ICP and LUM. Since

2D mapping is a special case of 3D mapping, the presented

algorithms can handle 2D laser range data as well, but process-

ing 3D data imposes a greater need for efficiency. The focus

of the parallelization was to keep up with current hardware

developments given by the introduction of dual and multi-core

6

(a) (b) (c) (d) (e)

Fig. 5. The main square in Horn (Austria). (a) 3D map in top view. (b) Monument in the center of the main square. (c) Corresponding photo (right part).
(d) Church spire. (e) Photo of the white-steepled of the St. Georg church. Data provided by courtesy of RIEGL LMS GmbH [1].

TABLE II

RUNNING TIMES IN MILLISECONDS FOR SINGLE THREAD COMPUTATION

VS. MULTI-THREAD COMPUTATION. THE FIRST ROWS REPRESENT THE

SPEED-UP FOR PURE ICP AND LUM COMPUTATIONS.

number of 3D scans one thread two threads four threads

2 (ICP) 20750 10985 10938

3 (ICP) 41984 21750 21750

6 (ICP) 134031 77390 77047

11 (ICP) 369828 218125 210515

11 (LUM) 794110 690023 678111

total 1163938 908148 888626

CPUs. The achieved speed-ups vary between the algorithms,

for ICP a maximum speed-up of 48.2% can be reported, which

is close to optimal on a dual-core CPU. The average speed-

up is lower (approximately 25%). This difference is due to

algorithm parts that cannot be parallelized and due to data

managing processes.

In future work, we will concentrate on parallelizing proba-

bilistic robotic algorithms to exploit current computing hard-

ware. Particle filters seem to be good candidates for paral-

lelization. The overall goal is to combine the reliability of

probabilistic algorithms, like particle filters with the precission

of deterministic approaches like scan matching.

ACKNOWLEDGMENT

The author would like to acknowledge Nikolaus Studnicka

(RIEGL Laser measurement Systems GmbH, Horn) and Oliver Wulf,

Bernardo Wagner (Leibniz Universität Hannover) for providing the

data sets. Further thanks to Dorit Borrmann, Jan Elseberg for im-

plementing the Lu / Milios style GraphSLAM with 6 DoF [5], to

Joachim Hertzberg and Kai Lingemann for supporting this work.

REFERENCES

[1] Riegl Laserscanner, http://www.riegl.co.at/, 2007.
[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two

3-d point sets. IEEE Trans. on PAMI, 9(5):698 – 700, 1987.
[3] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509 – 517, Sept. 1975.
[4] P. Besl and N. McKay. A method for Registration of 3–D Shapes. IEEE

Trans. on PAMI, 14(2):239 – 256, February 1992.
[5] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg.

The Extension of Lu and Milios Style SLAM to 6 Degrees of Freedom.
In IEEE/RSJ IROS 2007, (submitted).

[6] D. M. Cole and P. M. Newman. Using Laser Range Data for 3D SLAM
in Outdoor Environments. In Proc. IEEE ICRA, U.S.A., May 2006.

[7] U. Frese. Efficient 6-DOF SLAM with Treemap as a Generic Backend.
In Proc. IEEE ICRA, Rome, Italy, April 2007.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transaction on
Mathematical Software, 3(3):209 – 226, September 1977.

[9] M. Greenspan and M. Yurick. Approximate K-D Tree Search for
Efficient ICP. In Proc. IEEE 3DIM, Banff, Canada, October 2003.

[10] B. K. P. Horn. Closed–form solution of absolute orientation using unit
quaternions. J. of the Opt. Soc. of America A, 4(4):629 – 642, 1987.

[11] B. K. P. Horn, H. M. Hilden, and Sh. Negahdaripour. Closed–form
solution of absolute orientation using orthonormal matrices. Journal of
the Optical Society of America A, 5(7):1127 – 1135, July 1988.

[12] R. Katz, N. Melkumyan, J. Guivant, T. Bailey, J. Nieto, and E. Nebot.
Integrated Sensing Framework for 3D Mapping in Outdoor Navigation.
In Proc. IEEE/RSJ IROS, Beijing, China, October 2006.

[13] C. Langis, M. Greenspan, and G. Godin. The parallel iterative closest
point algorithm. In Proc. IEEE 3DIM, Quebec City, Canada, June 2001.

[14] A. Lorusso, D. Eggert, and R. Fisher. A Comparison of Four Algorithms
for Estimating 3-D Rigid Transformations. In Proceedings of the 4th

British Machine Vision Conference (BMVC ’95), Sept. 1995.
[15] F. Lu and E. Milios. Globally Consistent Range Scan Alignment for

Environment Mapping. Autonomous Robots, 4(4):333 – 349, Oct. 1997.
[16] P. M. Newman, D. M. Cole, and K. Ho. Outdoor SLAM using Visual

Appearance and Laser Ranging. In Proc. IEEE ICRA, Barcelona, 2005.
[17] A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann, K. Pervölz,

M. Hennig, K. R. Tiruchinapalli, R. Worst, and T. Christaller. Mapping
of Rescue Environments with Kurt3D. In Proc. IEEE SSRR, June 2005.

[18] Intel Dual-Core Processors. http://www.intel.com/technolo
gy/computing/dual-core/, 2007.

[19] E. E. Santos and P.-Y. Chu. Efficient and optimal parallel algorithms
for cholesky decomposition. Journal of Mathematical Modelling and

Algorithms, 2(3):217–234, September 2003.
[20] H. Surmann, K. Lingemann, A. Nüchter, and J. Hertzberg. A 3D laser

range finder for autonomous mobile robots. In Proc. 32nd Int. Symp.

on Robotics (ISR ’01), pages 153 – 158, Seoul, Korea, April 2001.
[21] H. Surmann, A. Nüchter, K. Lingemann, and J. Hertzberg. 6D SLAM

A Preliminary Report on Closing the Loop in Six Dimensions. In Proc.

5th IFAC Symp. on Int. Aut. Vehicles (IAV ’04), Lisbon, July 2004.
[22] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel,

editors, Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002.

[23] R. Triebel and W. Burgard. Improving Simultaneous Localization and
Mapping in 3D Using Global Constraints. In Proceedings of the National
Conference on Artificial Intelligence (AAAI ’05), 2005.

[24] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. In Proc. IEEE/RSJ IROS,
Beijing, China, October 2006.

[25] M. W. Walker, L. Shao, and R. A. Volz. Estimating 3-d location param-
eters using dual number quaternions. CVGIP: Image Understanding,
54:358 – 367, November 1991.

[26] J. Weingarten and R. Siegwart. EKF-based 3D SLAM for structured
environment reconstruction. In Proc. IEEE/RSJ IROS, August 2005.

[27] O. Wulf, K. O. Arras, H. I. Christensen, and B. A. Wagner. 2D Mapping
of Cluttered Indoor Environments by Means of 3D Perception. In Proc.
IEEE ICRA, USA, April 2004.

