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Abstract— Driving an automobile autonomously on rural roads
requires knowledge about the geometry of the road. Furthermore,
knowledge about the meaning of each lane of the road is needed
in order to decide which lane should be taken and if the vehicle
can do a lane change.

This paper addresses the problem of extracting additional
information about lanes. The information is extracted from the
types of road-markings. The type of lane border markings is
estimated in order to find out if a lane change is allowed. Arrows,
which are painted on the road, are extracted and classified in
order to determine the meaning of a lane such as a turn off lane.

Index Terms— Autonomous vehicle guidance, perception, clas-
sification

I. INTRODUCTION

Driving a car autonomously on rural roads requires the
perception of the environment. One of the fundamental infor-
mation it needs, is knowledge about the road the car is driving
on. Basically, this is the geometry of the road and the number
of lanes. Since the vehicle should be able to execute maneuvers
such as lane changing, collision avoidance, overtaking and
turning off, it needs additional information about each lane.
This includes knowledge whether a lane change can be applied
and knowledge about the meaning of each lane, i.e. it has to
be used for turning off.

The main contribution of this paper is the analysis of road-
markings which provide the requested information. Road-
markings can be divided into markings of lane borders and
painted arrows on the road. The type of lane border marking
determines if a lane change is allowed and the type of painted
arrow reveals the meaning of a lane.

A lot of work exists in the field of lane detection, an
overview can be found in [10]. Most approaches use edge
elements (e.g. [9]) or regions (e.g. [3]). In most approaches,
the estimation is done using Kalman-Filter [4] or Particle-
Filter (e.g. [1]).

Only few works deal with the extraction and analysis of
road-markings. In [5] a lane marker extractor is presented
and the concatenation of these markings is used to estimate
the course of the lane. The combination of road borders and
road markers was used in [6] for lane detection. Another lane
marker extractor is presented in [8]. Burrow et al. presented
an overview of approaches for lane marker segmentation in
[2].

This paper is organized as follows. First, our approach for
lane detection is presented which is the basis for the road
marking analysis. The analysis itself is divided into two parts.
The estimation of the type of lane border marking is presented

in section III-A. The classification of painted arrows is shown
in section III-B. Results are presented in section IV.

II. LANE DETECTION

Lanes are detected using a particle filter. A rule-based
system handles the tracking of multiple lanes by deleting
invalid lanes and creating new lanes if necessary. For each
lane, a single lane tracker is used with minor adaptations.

The lane model used for estimating each lane describes the
lane in front of the car and assumes that it is straight and flat.
It consists mainly of two parallel, straight lines. The model
is described by four parameters. The offset x0 describes the
lateral shift of the car’s main (longitudinal) axis with respect to
the middle of the lane. The angle ψ is the rotation between the
car’s main axis and the lane. The width of the lane is denoted
with w. The last parameter is the tilt angle φ between the
looking direction of the camera and the road plane. Figure 1
depicts the model of a single lane together with its parameters.
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Fig. 1. Model of a single lane used for tracking.

The basic idea of tracking a single lane is to use a particle
filter. Each particle represents one sample and the evaluation
function determines the probability having the measurements
given this particular sample. Each particle represents a partic-
ular parameter set of the lane model Mi, described by the four
introduced parameters:

Mi = {xi
0, ψ

i, wi, φi}. (1)

The a-posteriori probability for each particle is calculated by
evaluating different cues with each cue representing a specific
hint about the observed scene. The cues used in this work are:



2

• Lane marker cue (LM), estimating the probability of
having lane markings under the projected model.

• Road edge cue (RE), estimating the probability of having
edge elements at the borders of the lane.

• Road color cue (RC), estimating the probability of having
an area of road color under the projected area.

• Non-road color cue (NRC), estimating the probability of
having an area of non-road color outside the projected
area.

• Elastic lane cue (EL), evaluating the expected offset of
the lane.

• Lane width cue (LW), evaluating the expected width of
the lane.

Each cue gives a value between 0.0 and 1.0 and the overall
rate of a particle p(M i) evaluates to:

p(M i) = pLM (M i) · pRE(M i) · pRC(M i) ·
pNRC(M i) · pEL(M i) · pLW (M i) (2)

The resulting estimation p(M̂) is then given by the weighted
sum of all particles. This value is compared with two thresh-
olds in order to decide, if a lane was really tracked. Finally,
all estimated lanes are stored in a list and a control component
keeps track of all estimated lanes. A set of rules is used to
start new trackers and to terminate outdated ones.

Figure 2 shows an example where all three lanes are tracked.
The approach is described in detail in [11].

Fig. 2. Example of tracked lanes using the particle filter.

III. ROAD MARKING ANALYSIS

In order to classify road markings, two different types of
information are analyzed. The first one is the type of lines,
e.g. solid or dashed, and the second one are the arrows
which are painted on the road. Fortunately, Germany has strict
regulations for painting road markings [7] which can be used
for the analysis. The guidelines describe the appearance of
road markings and arrows as well as the position of each
marking. For dashed lines, the distance between two markings
is defined as well.

Basis for the analysis is the lane detection described in the
previous section. The analysis does not depend on a particular

lane model, since it uses only the lane borders and the middle
of the lanes as search regions for line and arrow classification
respectively. Therefore, it can easily be combined with other
approaches for lane detection.

A. Classification of lines

The classification of the lines is divided into four steps.
First, the lines are sampled using scanlines. In the second step,
each scanline is classified, in order to extract the type of line
it represents. The scanlines are than concatenated and outliers
are removed in the third step. Finally, the series of scanlines
is analyzed and the type of line (none, solid or dashed) is
determined.

1) Sampling with scanlines: The classification of lines
starts with the sampling of the painted lines using scanlines.
A scanline is a straight line orthogonal to the painted road
marking and it is represented in 3d-world coordinates in the
vehicle coordinate system. Each scanline has a length of 1
meter in order to cope with errors of the lane tracking. The
distance between two scanlines is set to 0.5 meter. This follows
the german regulations for road markings and assures that all
markings and gaps between markings are captured. The overall
layout can be seen in figure 3.
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Fig. 3. Layout of scanlines for analysis.

For the image analysis, the scanlines are projected into
the camera image using the projection matrix estimated by
the detection of the lanes. A binarization along the projected
scanline is performed in order to extract the road marking
under the scanline. A global threshold cannot be used for the
binarization of all scanlines since road surface and markings
have different brightness at different distances.

The distribution of the image intensities along the projected
scanline is mainly influenced by three road regions: the road
marking, the road surface, and the roadside. Therefore, we
assume three peaks in the distribution which are estimated
using k-means clustering. The optimal threshold is than the
medium value of the second and third peak.

2) Classification of scanlines: After the segmentation, all
pixels of the lane marking are set to 1 whereas the rest is
set to 0. The width of the marking is estimated using pixel
positions A to D as shown in figure 4. The backprojection
of these pixel coordinates into the vehicle coordinate system
gives the 3d-position of the transitions A → B and C → D.
Thus, the width of the road marking is between BC and AD.
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Road markings follow strict regulations in Germany. A width
of 12 cm is used for small markings and signals normal lane
boundaries whereas 25 cm wide markings which are used
to indicate turning lanes or emergency lanes. The distances
BC and AD are compared to these widths. This yields a
classification of the marking into the classes “no marking”,
“small marking” or “wide marking”.
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Fig. 4. Sample points for estimating the width of the road marking.

3) Concatenation of scanlines: So far, each scanline is
assigned a type of line marking. The aim is to separate the road
marking into segments of solid and dashed lines. Therefore,
the next step is to concatenate the scanlines in order to identify
these segments.

For concatenation of a scanline, its successor and its prede-
cessor are taken into account. In order to decide if a scanline
can be connected, the positions of the transitions A → B
and C → D within each scanline are compared with the
corresponding positions of its successor and predecessor. If
the position of either the upper or the lower transition are
similar, the scanlines can be concatenated. As can be seen
in the left of figure 5, the middle scanline can be connected,
because the position of the upper as well as the position of
the lower transition are similar. In the right of that figure, the
segmentation of the marking has errors which lead to a wider
marking. Nevertheless, the connection is established because
the position of the upper transition fit.

s s+1s-1 s s+1s-1

Fig. 5. Concatenation of scanlines because the position of the transitions fit.

In the second example in figure 6, one can see a solid
road marking on the top and the scanlines are connected. In
the right of that figure, a second line starts. Thus, scanline
s + 1 containes two roadmarkings. The upper one is already

connected and the lower one is not connected with scanline s,
because their positions are different.

s s+1s-1

Fig. 6. Case where the position of the transition does not fit.

4) Line type classification: For the classification of the line
type, the series of scanlines is transformed into a series of
symbols, where each symbol represents a particular type of
lane marking. Each scanline has 0, 1 or 2 markings and the
symbol of a scanline is derived by looking at the neighboring
scanlines.

s s+1s-1
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Fig. 7. Deriving the symbol of scanline s by looking at scanlines s− 1 and
s + 1.

Figures 7 shows, how the symbol for scanline s is derived.
For each neighboring scanline (left and right) and each line
marker position (upper and lower), a value is generated and
the resulting symbol is the sum of these values. If a marking
for a neighbor at a position exists, the value as depicted in
figure 7 is assigned, otherwise it is set to 0. For example, if
the right neighbor has a lower marking, a value of 2 is used.
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Fig. 8. Example for deriving the correct value for scanline s.
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Consider the examples given in figure 8. In the left part,
both, the left and right neighbor have an upper marking and
the value of scanline s is vs = 5 (1 + 4). In the right part,
again both neighbors have the upper marking. Additionally,
the right one has a lower marking and thus the value vs = 7
(1 + 2 + 4). Figure 9 shows a complete sequence of symbols
where the road marking is a dashed line.

5 41 0 5 41 0 5 41 0

VS

Fig. 9. Resulting sequence of symbols for a dashed marking.

The resulting sequence of symbols can be seen as a string
and regular expressions are used to extract the different
segments of the road markings.

B. Classification of arrows
Painted arrows on the street provide the second type of

information which can be used to derive the meaning of a
lane. Shape and position of arrows are regulated as well as
the painted lines.

The order of processing for classifying arrows is as follows.
First, for each lane, a region within the image is determined
where an arrow is expected. A segmentation of this region
takes place in order to extract the arrow in the second step.
The bounding box of the extracted arrow is than used for
template matching with known arrows.

Fig. 10. Overlaid search region for arrow detection.

Arrows are painted in the middle of a lane. Together with
the information from the lane detection, a region in world

coordinates is defined and projected into the camera image
for each detected lane.The size of the region corresponds to
the size of the biggest arrow plus a tolerance to cope with
noise from the lane detection. The resulting image region is
shown in figure 10.

In a preprocessing step, the brightness of the pixels inside
the region is analyzed and the classification is applied if the
brightness is above a predefined threshold. The segmentation
of the region into pixels belonging to the arrow and to the
road is done by using binarization. It uses the same k-means
clustering technique for estimating the optimal threshold as it
is done for the line analysis. Connected component analysis
is applied in order to extract the biggest component which is
the candidate for arrow estimation.

The extracted component is than backprojected into the ve-
hicle coordinate system and the region for template matching
is generated by extracting the bounding box of the backpro-
jected component. The bounding box is scaled to the size
of the templates and the sum-of-squared-differences (SSD)
between template and extracted region is used for determining
the correct type of arrow. Figure 11 shows on the left a
template used for classification and an extracted and scaled
region which is to be classified.

Fig. 11. Template of left arrow and extracted component.

IV. RESULTS

For testing our approach, different image sequences were
evaluated which contained country roads. Within the se-
quences several intersections appear which contain arrows for
possible turning directions. A maximum of three lanes are
visible at the same time at these intersections. The sequences
were recorded with a standard DV-video camera at 25 Hz and
an image resolution of 720x576 pixels. They were processed
off-line and thus the processing time was not evaluated.
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The tracking of the lanes is the basis for the analysis of the
road markings. The tracker shows convincing results, since
in all frames the lane of the vehicle is correctly tracked (see
figure 12). Only the left outermost lane within an intersection
is lost in a few situations, because only few road markings are
available or the lane is partially occluded by another vehicle
(see figure 13, the red marked lane on the left signals an tracker
loss).

Fig. 12. Tracking of multiple lanes within intersection.

Fig. 13. The outermost left lane is temporarily lost due to lack of road
markings.

Figure 14 shows the output of the line classification. The
scanlines are drawn with orange bars and the extracted road
markings are overlaid with short red bars. The green lines
display the result of the lane tracker module. The image
overlay in the upper left corner shows the reconstruction of the
recognized line markings from a bird’s eyes view. The type of
the borders of both lanes are correctly classified. For the right
lane, the right border is classified as a solid line marking and
the left border is classified as solid, too, for the first 15 meters
in front of the vehicle. This holds also for the borders of the
left lane.

Nevertheless, two things need to be pointed out. First of

total
occurence 2 6 6 3 5 22

found 2 5 6 2 5 20
classified 2 5 6 2 5 20

TABLE I
CLASSIFICATION RESULT OF ARROW ANALYSIS.

all, the width of the left border of the left lane is incorrectly
classified as being a wide line marking (with a width of 25
cm). This stems from insufficient image resolution at larger
distances and is difficult to handle in general. Fortunately, this
is a less serious problem, since this marking is less important
for the understanding of the road.

The second speciality is the space between the two lanes.
It contains additional road markings which indicate this space
as a blocked region. These markings are extracted, too, but
the concatenation of scanlines prevents to take these markings
into account for line classification.

Fig. 15. Example of classified arrows.

The classification of arrows is very convincing. Figure 15
shows the classification result of the arrows on the right and the
middle lane. We did a frame by frame analysis of two image
sequences with a total of 941 frames. In total, 22 arrows appear
in the images and 20 were detected and correctly classified.
One arrow was not detected because it was occluded by a
vehicle. The other one was not detected because the lane was
not found. All classifications were correct. Table I summarizes
the classification results for each type of arrow.

V. CONCLUSIONS

In this work, an approach for road marking analysis was
presented. The analysis is divided into two parts: lane border
markings and painted arrows. As long as the lane detection
provides correct information, lane border markings as well as
painted arrows are correctly extracted and classified.
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Fig. 14. Output of the road marker line classification.

There are two main directions for future work. The first
one is to extend the analysis itself in order to extract additional
information given by arrows which are part of the middle lane
marking and the blocked regions. The second direction is to
feed back the information about the lane markings into the
lane detection process in order to increase the robustness of
the lane tracking.
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[9] Kristjan Maček, Brian Williams, Sascha Kolski, and Roland Siegwart.
A lane detection vision module for driver assistance. In MechRob, 2004.

[10] Joel C. McCall and Mohan M. Trivedi. Video based lane estimation
and tracking for driver assistance: Survey, system, and evaluation. IEEE
Transactions on Intelligent Transportation Systems, 2005.

[11] Stefan Vacek, Stephan Bergmann, Ulrich Mohr, and Rüdiger Dillmann.
Rule-based tracking of multiple lanes using particle filters. In 2006
IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI 2006), Heidelberg, Germany, September,
3-6 2006.


