

Abstract—This paper presents the use of search algorithms

and discrete environments to find the path in mobile robots
systems navigation. Implementations of Breadth-First search
algorithm are made both in software and in hardware. The
results using the hardware approach provide significant time
gain, compared with the software implementation. The time gain
and the dynamical hardware reconfigurability allow multiple
tasks implementation and the possibility to choose the
appropriate one for the application.

Index Terms— hardware design, mobile robots, path planning,
search algorithms.

I. INTRODUCTION
Mobile robots systems are driven by control systems. The

architecture of these control systems provides different blocks
to accomplish specific robotic tasks. Traditionally, the
research in the field of Robotics is focused on the algorithms
used to accomplish fundamental tasks, like path planning [1].

The path-planning task, part of a mobile robot navigation
system, involves searching and finding the path between a
Start Point and a Goal Point in the environment where the
robots navigate. The environment is static or dynamic and
may have a discrete or continuous representation. Mobile
robots need to avoid obstacle collisions and generate an
optimal result with respect to path dimension or to execution
time. These imply different possible implementations [2].

To reach the goal, mobile robots need to have the ability to
act as to assure an efficient and reliable navigation. A great
variety of approaches for this strategic task have been
experimented [3].

The approaches that solve path planning are generally based
on software implementation. There are only a few hardware
implementation directions that have demonstrated navigation
competence [4].

Nowadays the Field Programmable Gate Array (FPGA)
circuits and other hardware reconfigurable systems makes it
possible to achieve implementations with a degree of
flexibility that only software applications were considered to

have until now. FPGA circuits allow running high-speed
hardware applications and provide a high degree of
parallelism [5].

While the quantity and diversity of the environments
increases, the criteria and applications that imply huge
computing power consumption for the mobile robots
navigation continue to increase, the encapsulated real-time
architectures for the mobile robots navigation systems must
respond with flexibility and enhanced processing capacity and
performance. Many repeating and time-consuming operations
are adequate to be implemented in reconfigurable hardware.
The establishment of a frame within which the hardware
applications can be dynamically reconfigured to respond to
the real-time requirements would allow new criteria
approaches in robot applications [6].

The search algorithms represent a useful and reliable
technique in solving path-finding, path-planning and obstacle-
avoidance types of problems. They are successfully used to
determine a valid path [7].

The basic idea of our approach is to highlight differences
between software and hardware implementations of path
generation from a Start Point to a Goal Point, path that will be
followed by mobile robots. At the same time we show that the
hardware approach provides significant time gain and also
easy and fast switching between multiple algorithms. We
started using the Breadth-First (BF) algorithm to obtain the
path generated in a given static discrete environment.
Implementations are made both in software and in hardware.

The paper is structured as follows: section 2 deals with the
overall description of BF used algorithm and its software
implementation and results. Section 3 explains the hardware
implementation chosen for the algorithm and presents the tests
and experimental validation. Section 4 reports the comparative
results obtained by the two implementations, and shows
conclusions and ideas for future work.

II. SOFTWARE IMPLEMENTATION
The environment where the path planning is made is one

with a typical bi-dimensional discrete representation. Most
often it is represented as a matrix of squares (cells), and
denotes the positions of the cells using the combination of the

Mobile Robot Path Planning Software and
Hardware Implementations

Lucia Vacariu, Flaviu Roman, Mihai Timar, Tudor Stanciu, Radu Banabic, Octavian Cret

Computer Science Department, Technical University of Cluj-Napoca, Romania
 {Lucia.Vacariu, Octavian.Cret}@cs.utcluj.ro

two coordinates. This way, the environment presents the cells
as Nodes, and each node has neighbors in 4 directions (N, S,
W, E). There is no connection on diagonals. The dimension of
the matrix is known. The matrix contains free spaces, static
obstacles, the Starting Point (S) and the Goal Point (G). It is
assumed that the matrix is closed, bordered by obstacles.

There are several algorithms used to obtain a path in such
environments. In a finite environment all the algorithms assure
that a path will be found between the Start Point and the Goal
Point. The characterization of algorithms is made with respect
to the length of the generated path and with respect to the time
spent to obtain it. These two criteria are independent. The
shortest path does not necessarily imply the minimum time, or
vice-versa.

By implementing path planning algorithms and their
alternative usage with respect to the application demands, we
aim to obtain an optimal path and minimum execution time.

A. Breadth-First Search Algorithm
 We start using the Breadth-First (BF) algorithm to obtain

the path. BF is a technique for searching and returning a path
from a given Starting Point to a given Goal Point. The
algorithm guarantees finding a solution, if there exists one. As
for its complexity, it is a linear algorithm with respect to the
number of considered nodes, while the way it searches is
based on maintaining a queue of all neighbors found to be
accessible through means of vertices until the Goal is reached.
Keeping a similar queue, in which for each node we keep the
one from which our node was found as neighbor, makes it
possible to reconstruct the path.

Given a random map of the environment, that respects the
criteria mentioned above, a Starting Point and a Goal Point,
the implementation of BF will return (if there exists) a valid
path between the two points. The path will be marked,
assuming that one can pass only through the free spaces and
the directions of motion are only the ones stated. The
algorithm is presented in Listing 1.

The reconstruction of the solution is done by means of a
special routine, which takes the list of previous elements and
reconstructs the visited points of the map (Listing 2).

B. Implementation and results
For the software implementation and experiments, we have

chosen Java as programming language. The implementation
required Object-Oriented techniques, Graphical User Interface
and Data/Maps saving and exporting, the Java compiler and
emulator [8], and the Eclipse IDE [9]. The tests were
performed on an Intel Pentium M at 1.73GHz, with 1G RAM.

The procedure to measure the time interval in which the
algorithm runs was to capture the system time and to compute
the difference of the values before and after the execution of
the algorithm routine (Listing 3).

We performed various tests on manually generated maps,
random maps, and small to large maps. The maps are
displayed using Black for obstacles and White for free spaces.
The starting point is Blue, and the goal is Yellow. We

observed that the running time increases significantly for large
maps. Each increase in the length of an assumed square matrix
produces a 2nd order polynomial increase (with respect to the
matrix dimension) in the execution time, because of the
spreading (the cells included in the search queue but which are
not on the final path).

Listing 1. BF Search Algorithm

Listing 2. Reconstruction of path

Listing 3. Execution time computing

Results prove very short paths (80% of the times optimal)
and fast times only for small matrices (Fig.1.).

Fig.1. 10x10 map dimension

For larger maps (e.g. 100x100 cells) the time increases very
much (Fig.2).

Fig.2. 100x100 map dimension

A comparison table (Table 1.) has been generated, based on
the obtained time and the spreading results. A larger spreading
implies larger execution time because the spreading is
included in the search queue, so each node is expanded. For
same dimension maps, but with fewer obstacles, the execution
time was greater. This is because a less obstacle-filled map
generates a larger spreading. The time is given in
microseconds.

Table 1. Software BF implementation results

III. HARDWARE IMPLEMENTATION
Our hardware-based environment is built upon Xilinx

FPGA core technologies, which is the well-known developing
technology in reconfigurable-based computing functionalities.

A. Hardware Design
For the hardware implementation, we chose from the FPGA

family, a Xilinx Virtex 2Pro Board (XC2VP30-FF896-6),

manufactured by Digilent Inc. The board is equipped with
VGA-output, used for visualizing test results on the monitor.
It required Xilinx ISE 8.1 Environment [10], which was used
for VHDL code synthesis, implementation and board
programming.

For the hardware implementation, a series of adaptations of
BF algorithm had to be done, in order to exploit the logic
resources of the Virtex FPGA device. The input matrix is
stored in BlockRAMs. Depending on the space available in
the FPGA device, the process memory can be implemented
inside or outside the chip (in the Virtex BlockRAMs or in an
external Dynamic RAM).

All components have been described in parameterizable
VHDL code. Thus, the design becomes portable on any
hardware support system.

1) Components design: The hardware solution is based on a
structural description with component-style design. It uses
interconnected components, each of them performing a certain
task. The most important component is the BF component,
which implements the algorithm (Fig.3.).

Fig.3. BF component

The signals interact with the required memory for applying
the BF algorithm, while some of the signals (clock, solve as
inputs and ready as output) are signals that belong to the
hardware configurations and interconnections.

To implement the memory, FPGA Virtex BlockRAMs were
used. This way, the speed of the configuration increases
because specialized components are used, and also the number
of available Virtex slices makes it possible to implement
larger designs.

As mentioned in Section II, the BF algorithm uses a
structure that retains all the neighbors of the current element.
In our case this structure is implemented in hardware by an
array, and uses more auxiliary array signals, all stored in
BlockRAMs. BF uses the start and target signals to identify
the position in the neighbors’ structure. It also contains a
direction signal, which is the most important, as it points to
the direction in which the algorithm searches for empty

spaces. This signal is looped in the 0-3 sequence, pointing to
the 4 directions.

As a final result, BF will set the algorithm path to Red.
Spreading will be marked with Green. The starting point is
Blue, and the goal is Yellow. Here Black is for free spaces and
White is for obstacles.

The MarkPath component is the one that implements the
reconstruction of the path after the algorithm has been applied
(Fig.4.).

Fig.4. MarkPath Component

In hardware, no initialization of values is made
automatically, therefore it is required that before any
algorithm is applied, the system is brought to an initial known
state, which must be a beginning state for the algorithm. Every
signal must be initialized, and the memory map also. The
component that deals with all these and with other clock
synchronization and enable / ready types of signals is called
CentralUnit (Fig.5).

Fig.5. CentralUnit Component

The Serial component implements the interface that assures
the receiving and transmission of the information from / to the
computer through the serial port connection. The data format
use: 1 start bit; 8 data bits; 1 parity bit; 1 stop bit. The
environment map is received and the path given by the
algorithm is transmitted (Fig.6.).

Fig.6. Serial Component

The VGA module contains the necessary signals to
synchronize the output on a regular monitor (the VGA
controller that provides the image on an 800x600 pixels
screen display). The component captures the value from the
matrix, which represents the type of cell to be displayed, and it
outputs the color corresponding to the value (Fig.7). The
matrix acts like a video memory for the component.

Fig.7. VGA Component

2) Integrated system: The architecture of integrated system
has been designed as the collection of components. The
connection between components is made by relatively simple
Finite State Machines (FSM’s), by signals, and with a few
processes that handle the synchronization, command all the
components, acquire signals from board inputs, and send data
to outputs (Fig.8.).

Fig.8. Integrated system

B. Hardware Results
To test the hardware implementation we used the same

maps that were used for the software implementation. The
system was tested several times to verify its reliability.

The path found after BF algorithm execution was displayed
on the monitor and was photographed in different stages of
evolution. We used these pictures to compare them with the
results from the software implementation.

The path is also saved in a file on the computer, after
transferred through the serial port, and is used in the
navigation system of the mobile robot.

At the beginning, after running Xilinx Synthesis software
for our hardware implementation, the report indicated a
maximal working frequency of 185 MHz (clock period: 5.4
ns).

The space available in FPGA Virtex devices allows the
implementation of a large matrix (e.g. 100x100). Our maps
use variable dimension matrices. The report generated by
Xilinx synthesis tool shows that the FPGA circuit is used only
at a small fraction of its capacity. For larger maps the amount
of BlockRAMs increases by a square function. Therefore, if
larger maps can not be stored into the BlockRAMs we can
also use the external DynamicRAM.

We used the simulation environment ModelSIM XE III 6.1
[11] to test if our hardware design has a proper functioning.
The waveforms generated in simulation helped us in choosing
the working frequency. We decided to make the first test at
the 120 MHz frequency.

The images taken from the hardware implementation of BF
algorithm show the map on the monitor. In Fig. 9, 10, 11, 12,
13 maps with different dimensions are used to verify that the
algorithm obtains the correct path and to check how much
time is required for that.

Fig.9. Result for 10x10 map dimension

Fig.10. Result for 30x30 map dimension

Fig.11. Result for 40x40 map dimension

Fig.12. Result for 50x50 map dimension

Fig.13. Result for 100x100 map dimension

After obtaining these encouraging results we continued
testing with 150 MHz frequency. This affects neither the path
found, nor the implemented algorithm, only the total running
time, which decreases proportionally to the difference
between the working frequencies.

Table 2 presents samples of algorithm execution times (in
µs) in our hardware implementation at the 120 MHz working
frequency and Table 3 shows the execution times at the 150
MHz frequency.

Table 2. Execution times at 120 MHz frequency

Table 3. Execution times at 150 MHz frequency

IV. COMPARISON BETWEEN IMPLEMENTATIONS AND
CONCLUSION

The different results between the two kinds of
implementation appear for the run time of the algorithm.
Generally, all the measured times were at least two orders of
magnitude better in hardware than in software (Table 4).

Table 4. Execution times in software and hardware

The paths obtained after running the algorithm in hardware
were the same as in software. This states that the
implementation of the algorithm is valid.

Paths obtained by both implementations are very good or
optimal. As for the time criterion, for large dimension maps
the hardware implementation is preferable because of the
much better running times obtained. Our results demonstrate
that the hardware-level solution for path-planning algorithms
is hundreds of times faster and proves to be a serious
alternative in speed to usual software solutions.

The board with FPGA device is proper to use for mobile
robot applications. It is now possible to take over a part of the
necessary control system of mobile robots, which can be
executed in FPGA.

The development of such hardware implementations is
more difficult because of the high degree of details we need to
cover. But the design using reusable components increases
system adaptability and reduces the time spent with the
implementation. Software implementations provide flexible
solutions, easy to implement, manage and maintain. The costs

of implementing software solutions are small, while solutions
developed on hardware require greater costs associated to the
boards. Nevertheless hardware solutions provide speeds that
cannot be achieved by any means in software, while the same
board can be used to perform other tasks, too.

In our future research, we intend to make hardware
implementations for others used path-planning algorithms, and
used them for the mobile robot navigation. We will make
implementation for continuous maps too.

ACKNOWLEDGMENT

This work was supported by the Romanian Ministry of
Education and Research, under grant type A, no. 1566/2007.

REFERENCES

[1] T. Arai, E. Pagello, and L. E. Parker, “Advances in Multi-Robot
Systems”, IEEE Trans. Robot. Autom., vol. 18, no.5, pp. 655-661,
October, 2002.

[2] G. Dudek, and M. Jenkin, Computational Principles of Mobile Robotics,
Cambridge University Press, UK, 2000, pp. 121-148.

[3] R. Siegwart, and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots, The MIT Press, Cambridge, MA, 2004, pp. 258-290.

[4] M. Grieger. (2004, Nov.). A parallel implementation of path planning on
reconfigurable hardware. Bielefeld University. Germany. [Online],
Available: http://www.ti.uni-
bielefeld.de/html/publications/diploma_theses/index.html.

[5] R. H. Katz, and G. Borriello, Contemporary Logic Design. 2nd ed.,
Pearson Prentice Hall, Upper Saddle River, NJ, 2005, pp. 421-451.

[6] M. Tommiska. (2005, March). Applications of Reprogrammability in
Algorithm Acceleration. Helsinki University of Technology. Finland.
[Online], Available:
http://lib.tkk.fi/Diss/2005/isbn9512275279/isbn9512275279.pdf

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990, pp. 400-472.

[8] Java API, [Online]. Available: http://www.java.sun.com/reference/api
[9] Eclipse IDE, [Online]. Available: http://www.eclipse.org
[10] The Xilinx ISE 8.1i Environment, [Online]. Available:

http://www.xilinx.com/support
[11] ModelSIM XE III 6.1, [Online]. Available: http://www.model.com

	INTRODUCTION
	SOFTWARE IMPLEMENTATION
	Breadth-First Search Algorithm
	Implementation and results

	HARDWARE IMPLEMENTATION
	Hardware Design
	Hardware Results

	Comparison between implementations and Conclusion

