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Abstract—There is a variety of different terrain types in
outdoor environments,eachposing differ ent dangersto the robot
and demanding a different driving style. In a previous paper,
we presenteda terrain classi cation method based on Support
Vector Machines (SVM), which usesvibrations induced in the
body of the robot to learn different terrain classes.However,
in the previous paper, our experimental results were based on
vibration data collectedby a hand-pulled cart with relatively hard
wheels.In this paper, we presentexperimentson data collected
by our RWI ATRV-Jr outdoor robot. Additionally, we compare
our SVM-based method to alternative classi cation methods.
The comparison shows that our approach outperforms the other
methods.

Index Terms— Outdoor robotics, vibration-based terrain clas-
si cation

|. INTRODUCTION

In outdoor ervironments,a mobile robot typically faces
mary different terrain types. Someof them are at and not
slippery andthereforetherobotcantraversethematrelatively
high speed. Other ground surfaces are loose, slippery or
bumpy, and thereforedangerous.To prevent accidents,the
robothasto traversetheseregionsslowly andcarefully. These
examplesshav that the ground surface itself is a possible
hazardto the robotin outdoorernvironments.Sucha hazardis
calleda non-geometrichazad [21]. Therobot canonly avoid
accidentsif it adaptsits driving style to the current terrain
type.

Oneway to determingheterraintypeis to directly estimate
terrain parameterdik e cohesionor slippagefrom sensomea-
surementsAnotherway is to grouptheterraininto classedik e
asphaltdirt or gravel, andto learntheseclassegsrom training
examples.Oncethe robot haslearnedthe different classesit
can classify new terraindataaccordingto the learnedmodel.

The most commondata usedfor terrain classi cation are
data collected by laser scannersor cameras.Ladarbased
methodsoften focus on seggmentingthe ground surface from
vegetationor all kinds of obstacles(e.g. rocks) instead of
estimatingthe type of the groundsurfaceitself [18, 8, 19, 12].
Other methodsdivide the ground surface in navigable and
non-navigableregions[22]. Vision-basednethodsusuallyuse
texture or color information[1, 4, 12]. Someresearctasalso
beendone on using force-torquesensorsand potentiometers
to detectnon-geometrichazardq9, 11].

Vibration-basederrainclassi cationwas rst suggestedy
lagnemmaand Dubowsky [10]. The ideais to measurethe
vibration that is inducedin the robot while it traversesthe
terrain. The vibration canbe measuredt the wheels the axes

or the body of the robot. Usually, accelerometersre used
to measurethe vibration perpendiculato the groundsurface
(z-acceleration).As different terrain types induce different

vibration signals, one tries to learn characteristicvibration

signals for each terrain type from training examples. The

learned model is then used for classi cation of unknawvn

data. The disadantageof the methodis that terrain can be

classi ed only while therobottraversest, but not beforehand.
Advantagesre,for example,theindependenc&om illumina-

tion conditionsand the high reliability. Thus, vibration-based
terrain classi cation canbe usedasa stand-aloneclassi er or

in combinationwith othersensors.

Brooks and lagnemmaexamined vibration-basedterrain
classi cation for planetaryrovers[2, 3]. They use Principal
ComponentAnalysis (PCA) to reduce the dimensionality
of their data and Linear Discriminant Analysis (LDA) for
classi cation. Sadhukharand Moore presentedan approach
basedn probabilisticneuralnetworks (PNN) [14, 15]. In [20],
we suggestedn approachthat usesSupportVector Machines
(SVM) for classi cation. Stavenset al. presentedn approach
for vehiclesdriving up to 35 mph[17]. However, they focused
on assessinghe roughnes®f theterrainto adaptthe velocity,
and not on groupingthe groundsurfaceinto classes.

In our previous paper[20], we obtainedour experimental
results using data from a hand-pulledcart with relatively
hard wheels.Thesewheelsleadto relatively clearand strong
vibrationsignals.In this paperwe presenexperimentaresults
on datathat we collected using our RWI ATRV-Jr outdoor
robot. Its big, air- lled tiresarelikely to damperthe vibration
signals.We alsoexaminehow differentrobot speedsn uence
the classi cation performance Additionally, we implemented
the terrain classi cation approachpresentedby Sadhukhan
and Moore aswell asthe approachsuggestedy Brooks and
lagnemmaandcomparebothto our approachThesemethods
cover two of the four main groupsof classi cation methods,
namelykernelmethodgour SVM-basedapproachandneural
networks (the PNN). Fromthe third group,the methodsbased
on Likelihood, we choseNave Bayes,which is a standard
methodfrom this group. The fourth group are decisiontrees,
from which we examinedthe J4.8 algorithm. J4.8 is based
on the well known C4.5 algorithm. Finally, we also testeda
k-nearest-neighbakNN) classi er.

The rest of this paperis organizedas follows. Sectionl|
recapitulatesour SVM-basedterrain classi cation approach.
Sectionlll brie y describeghe alternatve classi cationmeth-
ods. SectionlV presentour experimentalresultsand nally,
SectionV concludeghe paperand suggestguture work.
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Fig. 1. Someexampleacceleratiorvectorsfor differentterraintypes.

Il. SVM-BASED TERRAIN CLASSIFICATION METHOD

In this section,we rst give an overvien over our method.
Thenwe presentfeatureextractionand SVM classi cationin
more detail.

A. MethodOverviav

Our methodconsistsof a training phaseanda classi cation
phaseln thetraining phasewe rst drive therobotaroundon
known terrainto collect z-acceleratiordataat 100 Hz. Then,
we split the acceleratiorinto 1 100 vectors,i.e. eachvector
representsl s of robot travel. Additionally, we label each
vector with its terrain type. Then we transformeachvector
to the frequeny domain (Sectionll-B). Next, we normalize
eachfeature(= frequengy component}o mean0 andstandard
deviation 1. In the last step,we train an SVM on the labeled
featurevectors(Sectionll-C). The training phaseis an of ine
step,becauset is computationallyintensie.

In the onlinetestphasetherobotdrivesaroundon unknown
terrain. After eachsecond,we createa 1 100 acceleration
vector, transformit to the frequeny domain and normalize
it using the sameparametersisedduring training. Then, we
classifythe resultingtestvectorusingthe trainedSVM to get
the predictedterraintype.

B. Feature Extraction

The vibration vectorscollectedby the robot containaccel-
erationvaluesmeasurecerpendiculato the groundsurface.
Fig. 1 shavs someexamples Exceptfor grassthe signalsare
very similar. Thus, it is bene cial to transformthesevectors
to a more signi cant representation.

In [20], we compareddifferent representationsa Fast
Fourier Transform(FFT) representatioms suggestedy Sad-
hukhan[14], a log-scaledpower spectraldensity (PSD) as
used by Brooks and lagnemmal3], and a more compact
representatiorbasedon simple featurescalculatedfrom the
acceleratiorvector (e.g. the numberof sign changes)In our
experimentsusing dataof the hand-pulledcart, we found the
simple featuresto work best.However, for the datacollected
by our robot, the frequeng-basedepresentations.e. the FFT
andthe log-scaledPSD,work better Thus,for therestof this

paperwe will useeitheralog-scaledPSDor a 128-pointFFT
of the acceleratiordataasfeaturevectot

C. SVMClassi cation

After featureextraction, we usean SVM [6] to learn for
eachterraintype a separatiorfrom all otherterraintypes(one-
versus-estclassi cator). Later on, an unseertest patternwill
be assignedo thatclass,for which the distanceto the decision
boundaryis largest.

SVMs belongto thefamily of kernelmethodq16]. Theidea
is to constructa separatindhyperplaneébetweerntwo classeof
points, suchthat the mamin betweenthe hyperplaneand the
pointsclosestto it becomesnaximal.Nonlinearclassi cation
can be achieved by rst mappingthe original datato some
high dimensionalfeature spacein a nonlinearfashion. This
computationis usually doneimplicitly by meansof a kernel
function,which de nesa dot productbetweerpointsin feature
spacelt is alsopossibleto allow for asmallnumberof training
errorsby meansof a so-calledsoft mamgin parameterC that
regularizesthe trade-of betweenmaximizing the mamgin and
minimizing the training error.

In our casewe employ a Radial Basis Function (RBF)
k(x;y) = exp(k x yk?=2 2) askernelfunction, wherex
andy aretwo featurevectors.Thewidth of the RBF kernel
togetherwith the soft mamgin parameteC aretunedvia a sys-
tematicsearctonthegridlog, 2 f~=4;::;4"gandlog, C 2
f 2;::;14g, where” is setsuchthatexp( D=2"?) = 0:1.
D denotesthe length of the featurevectors.Each candidate
parametervector ( ;C) on the grid is evaluatedby 5-fold
cross-alidation. Note that this automaticparameteiselection
only involvesthe training data,but not the testdata.As SVM
implementationve useLIBSVM [5].

I1l. ALTERNATIVE CLASSIFICATION METHODS

This sectionbrie y describeghe classi cation methodsto
which we compareour SVM-basedapproach.The FFT and
log-scaledPSDfeaturevectorsarethe samefor all approaches.

A. PNN

Using probabilisticneuralnetworksfor terrainclassi cation
was suggestedby Sadhukhan[14]. As feature vector he
usedthe frequeny componentf a 1024-pointFFT that are
betweenl0 and20 Hz. However, in our experimentswe used
a 128-pointFFT and all frequeny componentshbecausehis
led to betterresults.Pleasenote that we did not computethe
results presentedin Section IV using Sadhukhars original
codegivenin [14], but usingan own implementatiorof PNNs.
Thereasoris thaton average our codeproducedbetterresults
than Sadhukhars code.

A PNN has three layers (Fig. 2). The rst layer is the
input layer and consistsof d input units a;, whered is the
dimensionalityof thedata.Eachinput unitis connectedo each
of the n patternunits w;, wheren is the numberof training
vectors. Each of the patternunits is connectedto a single
catggory unit ¢;. The numberc of cateyory units corresponds
to the numberof classes.
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Fig. 2. A probabilistic neural network consistingof d input units a;, n
patternunitsw; andc cateory unitsc; .

In the training phase the n normalizedtraining vectorsx;
arepresentedo the PNN. Basically training consistf storing
eachtraining vectorx; in the correspondingpatternunit w;.
Additionally, each patternunit is connectedto the category
unit correspondingdo the label of the training vector

For classi cation, a normalizedtest vectory is presented
to the PNN. Eachpatternunit w; calculateghe inner product
net; = wily which is called the net activation Then, the
patternunit w; emits the value e("eti D= * of a nonlinear
activation function to the attachedcateyory unit c,. The
parameter mustbe setby the user In our experimentswe
found = 0:4 to work best. Each categyory unit sumsthe
inputs from the patternunits. Finally, the category unit with
the highestaccumulatedvalue gives the predictedlabel. A
more detaileddescriptionof PNNs can be foundin [7].

B. Brookss Method

In the approachpresentedoy Brooks and lagnemma,the
terraincanalsobelabeledas“unknown”, if theclassi eris not
sureaboutthe predictedclass.We implementedhe algorithm
basedon the detaileddescriptionggivenin [2] and[3].

Brooksandlagnemmaransformtheir acceleratiordatato a
power spectraldensity(PSD).A log-scalingof the magnitude
reducesthe dominating effect of high-magnitudefrequeng
components.Then, they use principal componentanalysis
to reducethe dimensionalityof their feature vectorsand to
separatethe signal from noise. They suggestto usek = 15
principal componentsHowever, we usedk = 30, becausehis
worked betterfor our data.

To separatdeaturevectorsof differentclassesBrooksand
lagnemmauselinear discriminantanalysis(LDA). They train
a set of pairwise classi ers, one classi er for eachpossible
pair of terraintypes. Theseclassi ers take into accountboth
the distribution of feature vectors within a single class as
well as the separationof the class means,and compute a
discriminationvector d. To classify a test vectory, the dot
productd(y) = dy is computedandthe Mahalanobiglistance
of d(y) to both terrain class meansis calculated.If the
difference betweenthe Malahanobisdistancesis < 1, the
terrainclassof y is “unknown” andboth involved classegyet
an“unknown” vote.Otherwisethe classmeanwith thesmaller
distancespeci esthe predictedlabel and castsa positive vote
for the winning classand a negative vote for the otherclass.

If therearemorethantwo classesa voting schemesumsup
the votesof the pairwiseclassi ers. The classwith the largest
numberof positive voteswins. If the numberof “unknown”

votesfor this classis equalto or larger than the numberof
positive votes, or there are one or more negative votes, the
terrainis classi ed as“unknown”.

C. kNN

The k-nearest-neighboalgorithm is a very simple classi-
cation method. However, it often performsvery well and
therefore,it is an importantbenchmarkmethod.

For training, simply all training vectorsx; are stored.To
classify a testvectory, the distancesd; of y to all training
vectors are computedand the k training vectors with the
smallestdistancesare selected The predictedclassis the one
thatis mostfrequentamongthe labelsof the selectedvectors.
If thereis a draw, often simply a randomlabelis choserfrom
the winners.In our experiments,we found k = 10 to work
bestamongthe valuesk 2 f1;2;5; 10; 15g.

D. DecisionTrees

Decision Treesare classicalmachinelearning approaches
basedon information theoreticalconsiderationsThe version
J4.8usedin this paperis a Java implementatiorbasedon the
well known C4.5algorithm[13]. Both of themrely onthe ID3
algorithm and use entropy-basedmeasuresfgs constructing
the classi cation tree. The entopy E(X) =, pilog, p;
is a measurefor the disorderof a data collection X with
pi being the proportionof X belongingto the classi. This
measureannow beusedfor de ning theability of anattribute
A for classifying the examplesby calculatingthe expected
reduction of entrogy if the data are ordered according to
- This leadsto the information gain G(X;A) = E(X)

V2V alues (A) ';;—“j'E(XV) which describeghe discriminatory
power of an attribute A.

ThelD3 algorithmconstructghetreetop-dovn by choosing
the most descriptive attribute A in eachnodeH and adding
a new branchto H for eachvalue of A in the casethat the
attribute is nominal. Otherwisea binary split accordingto the
value of A is performed.Finally, eachleaf is labeledby the
mostcommonclassof the subsetof X representedy it.

E. Ndave Bayes

In contrastto the previously describedapproachesNave
Bayes [13] does not perform a simple prediction but
a probability estimation of a class. The basic idea of
this algorithm is to assign each instance x the class
v; which is the most probable class considering its at-
tributes A;. Using Bayes' theorem, this can be ex-
pressedas c(x) & argmaxy, P(ai;:anjvi)P(vi) =
argmaxy, P(vi) ~; P(ajv). The training of the classier
simply consistsof estimatingthe P (v;) and P (ajv;) based
on the distribution in the training data.

IV. EXPERIMENTAL RESULTS

To collectvibrationdata,we usedour RWI ATRV-Jroutdoor
robot (Fig. 3). We mounted an Xsens MTi sensoron an
aluminiumplateon top of therobot. The XsensMTi measures
the z-acceleratiorperpendiculato the ground oor at 100Hz.



Fig. 3. Our RWI ATRV-JR outdoorrobot “Arthur”.

TABLE |
NUMBER OF SAMPLES PER CLASS IN OUR DATASET

class 0.2m/s 04m/s 0.6m/s total
indoor oor 282 549 581 1412
asphalt 499 513 600 1612
gravel 311 323 392 1026
grass 482 572 631 1685
paving 314 573 567 1454
clay 423 579 605 1607

no motion 199 615 615 1429
total 2510 3724 3991 10225

In the middle of July andin the beginning of Decemberwe
collectedvibration databy driving the robot over six different
terraintypes:indoor PVC oor, asphaltgravel, grass(i.e. the
soil underthe grass),paving andclay (the surfaceof a boule
court). As seventh “terrain type”, we addedsomedatafrom
situationsin which the robot did not move. Fig. 4 shows
example imagesof the different surfaces. Additionally, we
usedthreedifferentrobot speedsabout0.2 m/s, 0.4 m/s and
0.6 m/s. In total, our datasetcontains10225 sampleswhich
correspondo about2 h 50 min of robot drive. Tah | shows
the numberof samplesn our datasein more detail.

In our experimentswe used10-fold cross-alidation. This
meansthat for each experiment,we split the data into 10
equally sized parts.In eachof the 10 folds, we used9 parts
for training, and the remainingpart for testing. We obtained
the nal resultby averagingthe resultsof the folds.

As quality measuref a classi cation result, we use the
true positiverate (TPR) andthe false positiverate (FPR).The
TPRfor a classc; is the percentagef testvectorsbelonging
to ¢ that were correctly classi ed as classc;. The FPR for
classc; is the percentagef testvectorsnot belongingto ¢; but
wrongly classi ed as classc;. Good resultsare characterized
by a high TPRanda low FPR.

It is dif cult to comparethe classi cationmethodof Brooks
to the other approachesbecauset is the only one allowing
“unknown” predictions. These“unknowns” are not counted
as correct,so the TPR of Brooks's methodis expectedto be
lower thanfor the other methods.However, the “unknowns”
are also not regardedas false. Thus, the FPR is expectedto
be betterthanfor the other methods.

For the different classi ers, often one of the FFT or log-
scaledPSD representationvorks betterthanthe other Thus,
for each classi cation method, we presentonly the results

Fig. 4.
oor 2) asphalt3) gravel 4) grass5) paving 6) clay.

The different terrain typeswe usedin our experiments:1) indoor

obtainedby usingthe more suitablefeaturesFor PNN, Nave
BayesandJ4.8,we usedthe FFT representatiorwhereador
kNN andthe methodof Brooks,we usedthe log-scaledPSD.
For the SVM, we presentthe resultsfor both features.

In a rst experiment,we consideredonly the threeterrain
classesgravel, grassand clay, becausethere may be mary
ervironmentswere only a small numberof differentterrains
exist. Fig. 5 shaws the true positive rates obtainedby the
different methodsat differentspeedsAdditionally, the gure
shaws the resultswhenall speedsare memgedin one dataset.
Note that the TPRsin Fig. 5 are the averageTPRs of the
three classes.The results of the SVM lie between95 and
98% for 0.2 to 0.6 m/s and betweenabout91 and 92% for
mixed velocities. Only the KNN method performs similarly
well. The performanceof the PNN strongly dependson the
velocity; the TPRsare between72 and 85%. The TPRsusing
Brooks's method,Nave Bayesand J4.8 are around90% for
the individual velocities. However, on mixed velocities, the
TPRs drop to about 77-82%. The results shov no general
trend on which velocity can be classi ed best. However, all
methodsperform better on individual velocities than on the
mixed dataset.

Fig. 6 shows the false positive ratesfor the 3-classex-
periment. As expected,the method of Brooks outperforms
all otherapproachesThis methodprefersclassifyingsamples
as “unknown” to classifying them wrong. Among the other
approachesSVM and kNN perform similarly well. PNN,
Nave Bayesand J4.8 perform signi cantly worse.

In [3], Brooks and lagnemmaalso presentedesultsof a
3-classexperimentincluding sand,dirt and gravel. They used
vibration datacollectedat 44.1 kHz by the rover TORTOISE,
whosevelocity variedfrom 2 to 5 cm/s,andsplit the vibration
datainto sggmentsof 3 s. About 85.3% of the test vectors
werecorrectlyclassi edin their experiment,andabout10.7%
of the sampleswvereclassi ed as“unknown”. Despitethe very
different experimental settingsin our experiment, Brooks's
methodalso performswell. It achiezesa a TPR of over 90%
onindividual velocities,anda TPR of 77% on the mixed data.

In [14], Sadhukhanpresenteda 3-class experiment that
is very similar to our experiment. An RWI ATRV-Jr robot
collectedacceleratiorsignalsat 100 Hz. The robot traversed
a testbedconsistingof grass,dirt and gravel at 0.2, 0.4, 0.6
and 0.8 m/s. Sadhukharobsened that the classi cation rates
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increasewith the speedof the robot. At 0.2 m/s, about75%
of the testvectorswere classi ed correctly whereasghe TPR
wasabout94.7%at 0.8 m/s. Our experimentsdid not con rm
this nding, perhapshecausesadhukharcollectedhis datain
a more controlledtestbedernvironment.

In a further experiment, we included all seven terrain
classesThe classi cation performanceof all approachesle-
creasedue to the more dif cult dataset.Fig. 7 shavs that
againour SVM approactperformsbest.The TPRsfor 0.2 m/s
andthe mixed datasefreabout80%, andfor 0.4 and0.6 m/s,
the TPRsareabout85-86%.This time,the kNN cannot match
the performanceof the SVM, but is best amongthe other
approachesin total, Nave Bayesis next best, followed by
PNN, the methodof Brooksandthe J4.8decisiontree.Using
mixed velocities,the approachof Brooksclassi esabout26%
of the samplesas “unknown”, which lead to a low TPR.
The resultsalsoshaow that datacollectedat 0.2 m/s are more
dif cult to classify thandatacollectedat higher speeds.

Fig. 8 shaws the false positive ratesof the 7-classexperi-
ment. The approachof Brooksagainperformsbest.However,
the differenceto the SVM is smaller than in the 3-class
experimentOn mixedvelocities the FPRsof Brooks's method
and our SVM method are approximatelyequal. The further
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rankingis KNN, followed by Nave Bayes,PNN and J4.8.

We also examinedhow well differentterrain classescould
be classi ed. For this purpose,Tah Il shavs the confusion
matrix of our SVM method. The entry (i; j) of the matrix
shavs how often (in %) samplesbelongingto classi were
classi ed asclassj . To createthe confusionmatrix, we used
our most dif cult dataset:seven terrain classesand mixed
velocities.

The confusion matrix indicates that a stoppedrobot is
correctlydetectedn mostof the casesindoor oor is wrongly
classi ed asasphaltin about20% of the caseslin turn, asphalt
is misclassi ed as indoor oor in about12% of the cases.
About 17.5% of gravel samplesare wrongly classi ed as
paving andnearly10% of paving is classi ed asgravel. These
pairs shawv that the most noticeablemisclassi cationsoccur
betweenterrain typesthat are rather similar. Grassseemsto
be well distinguishabldrom all othertypes.

Tah Il comparesthe computationtimes of the different
classi ers on two exampledatasetsA and B, measuredn a
3 GHz PCwith 1 GB of RAM. In the 3-classdatasefA, we did
training on 3886 vectorsand classi cation on 432 vectors.In
the 7-classdatasetB, we used9203 vectorsfor training and
1022 vectorsfor classi cation. Both datasetscontain mixed



TABLE I
CONFUSION MATRIX FOR 7-CLASS CLASSIFICATION USING SVMS. NM:
NO MOTION, IN: INDOOR FLOOR, AS: ASPHALT, GV: GRAVEL, GS:
GRASS, PV: PAVING, CL: CLAY.

NM IN AS GV GS PV CL
NM 99.93 0.07 0 0 0 0 0
IN 0 71.66 18.28 0.07 0.35 0.99 8.64
AS 0 11.85 74.13 043 0.50 3.91 9.18
GV 0 0.10 029 7037 1044 1755 1.27
GS 0 0 0.06 3.02 9383 1.96 1.13
PV 0 1.03 2.75 9.63 3.30 7655 6.74
CL 0 2.55 7.41 0.87 2.93 7.15  79.09

TABLE 11l

COMPUTATION TIMES ON 3-CLASS DATASET A AND 7-CLASSDATASET B

Training (s) Classi cation (ms)
B A B

Brooks 14.104 100.670 | 0.047 0.150
Nave Bayes | 0.473 1.360 1.420  2.250
SVM (PSD) | 3223.729 27213.897| 0.835  3.086
SVM (FFT) | 4251.225 29820.799| 0.978  4.125
Ja.8 8.990 41.750 | 19.221 38.612
kNN 710 6 710 © 27.076 65.218
PNN 0.054 0.130 66.464 135.692

velocities. Note that Tah Il shavs the training times for
complete training, whereasclassi cation times are average
valuesfor a single vector

The training times for the SVM (up to several hours)
are much higher than for the other methods,becausethe
gridsearchto tune the parameterds very time-consuming.
As training canbe doneof ine, however, the time neededo
classify a testvectoris more important. Using Nave Bayes,
the SVM and the method of Brooks, classi cation takes at
mostafew millisecondsTheclassi cationtimesfor J4.8 kNN
and PNN are signi cantly higher

V. CONCLUSION

In this paper we presentedextensive experiments on
vibration-basederrainclassi cation. The experimentsshaved
that our SVM-basedmethodworks well on datacollectedby
a commonoutdoorrobot driving between0.2 and0.6 m/s. As
the classi cation ratestendedto slightly increasewith higher
speedwe think that our methodwill alsowork for velocities
of aboutl m/sor abose. However, themoredifferentvelocities
are memged togetherin one dataset,the more dif cult the
classi cation. A solutioncould be to train separateclassi ers
for differentrangesof velocities,andto selectthe appropriate
classi er for a testvector basedon the velocity measuredy
the robot's odometry

We also comparedour method to other approachesan
methodsuggestedby Brooksandlagnemmaanapproactpre-
sentedby Sadhukharand Moore basedon probabilistic neu-
ral networks (PNN), a k-nearest-neighboclassi er, a Nave
Bayes approachand a J4.8 decisiontree. The experiments
shavedthatamongthe comparedapproacheyur SVM-based
methodworked best.Despiteits simplicity, the KNN classi er
alsoworked well. Unlike the other methods the approachof
Brooks and lagnemmacan classify a sampleas “unknown”,
which often led to a low true positive rate, but alsoto a low

false positive rate. PNN, Naive Bayesand the J4.8 decision
tree performedworsethanthe otherapproaches.

In the future, we planto examineif it is possibleto learna
separatiorbetweenterrain classedrom scratchwithout prior
knowledge.Additionally, we will investigatdf theacceleration
measuredn other directions, e.g. sidavays, is also suitable
to capturethe vibration, and if a combinationof different
directionscan further improve the classi cation rates.
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