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Abstract— There is a variety of differ ent terrain types in
outdoor envir onments,eachposingdiffer ent dangersto the robot
and demanding a differ ent dri ving style. In a previous paper,
we presenteda terrain classi�cation method based on Support
Vector Machines (SVM), which usesvibrations induced in the
body of the robot to learn differ ent terrain classes.However,
in the previous paper, our experimental results were based on
vibration data collectedby a hand-pulled cart with relatively hard
wheels.In this paper, we presentexperiments on data collected
by our RWI ATRV-Jr outdoor robot. Additionally , we compare
our SVM-based method to alternative classi�cation methods.
The comparison shows that our approach outperforms the other
methods.

Index Terms— Outdoor robotics, vibration-based terrain clas-
si�cation

I . INTRODUCTION

In outdoor environments,a mobile robot typically faces
many different terrain types.Someof them are �at and not
slippery, andthereforetherobotcantraversethemat relatively
high speed.Other ground surfaces are loose, slippery or
bumpy, and thereforedangerous.To prevent accidents,the
robothasto traversetheseregionsslowly andcarefully. These
examplesshow that the ground surface itself is a possible
hazardto the robot in outdoorenvironments.Sucha hazardis
calleda non-geometrichazard [21]. The robot canonly avoid
accidentsif it adaptsits driving style to the current terrain
type.

Oneway to determinetheterraintypeis to directly estimate
terrainparameterslike cohesionor slippagefrom sensormea-
surements.Anotherway is to grouptheterraininto classeslike
asphalt,dirt or gravel, andto learntheseclassesfrom training
examples.Oncethe robot haslearnedthe differentclasses,it
canclassifynew terraindataaccordingto the learnedmodel.

The most commondata usedfor terrain classi�cation are
data collected by laser scannersor cameras.Ladar-based
methodsoften focus on segmentingthe groundsurfacefrom
vegetation or all kinds of obstacles(e.g. rocks) insteadof
estimatingthetypeof thegroundsurfaceitself [18, 8, 19, 12].
Other methodsdivide the ground surface in navigable and
non-navigableregions[22]. Vision-basedmethodsusuallyuse
textureor color information[1, 4, 12]. Someresearchhasalso
beendoneon using force-torquesensorsand potentiometers
to detectnon-geometrichazards[9, 11].

Vibration-basedterrainclassi�cationwas�rst suggestedby
Iagnemmaand Dubowsky [10]. The idea is to measurethe
vibration that is induced in the robot while it traversesthe
terrain.The vibrationcanbe measuredat thewheels,theaxes

or the body of the robot. Usually, accelerometersare used
to measurethe vibration perpendicularto the groundsurface
(z-acceleration).As different terrain types induce different
vibration signals, one tries to learn characteristicvibration
signals for each terrain type from training examples.The
learned model is then used for classi�cation of unknown
data.The disadvantageof the methodis that terrain can be
classi�edonly while therobot traversesit, but not beforehand.
Advantagesare,for example,the independencefrom illumina-
tion conditionsand the high reliability. Thus,vibration-based
terrainclassi�cationcanbe usedasa stand-aloneclassi�er or
in combinationwith othersensors.

Brooks and Iagnemmaexamined vibration-basedterrain
classi�cation for planetaryrovers [2, 3]. They use Principal
ComponentAnalysis (PCA) to reduce the dimensionality
of their data and Linear Discriminant Analysis (LDA) for
classi�cation. Sadhukhanand Moore presentedan approach
basedonprobabilisticneuralnetworks(PNN) [14, 15]. In [20],
we suggestedan approachthat usesSupportVectorMachines
(SVM) for classi�cation.Stavenset al. presentedan approach
for vehiclesdriving up to 35 mph[17]. However, they focused
on assessingtheroughnessof the terrainto adaptthevelocity,
andnot on groupingthe groundsurfaceinto classes.

In our previous paper[20], we obtainedour experimental
results using data from a hand-pulledcart with relatively
hardwheels.Thesewheelslead to relatively clearandstrong
vibrationsignals.In this paper, wepresentexperimentalresults
on data that we collectedusing our RWI ATRV-Jr outdoor
robot.Its big, air-�lled tiresarelikely to dampenthevibration
signals.We alsoexaminehow differentrobotspeedsin�uence
the classi�cation performance.Additionally, we implemented
the terrain classi�cation approachpresentedby Sadhukhan
andMoore aswell as the approachsuggestedby Brooksand
Iagnemma,andcomparebothto our approach.Thesemethods
cover two of the four main groupsof classi�cation methods,
namelykernelmethods(our SVM-basedapproach)andneural
networks(thePNN). Fromthe third group,themethodsbased
on Likelihood, we choseNä�ve Bayes,which is a standard
methodfrom this group.The fourth grouparedecisiontrees,
from which we examinedthe J4.8 algorithm. J4.8 is based
on the well known C4.5 algorithm.Finally, we also testeda
k-nearest-neighbor(kNN) classi�er.

The rest of this paper is organizedas follows. SectionII
recapitulatesour SVM-basedterrain classi�cation approach.
SectionIII brie�y describesthealternativeclassi�cationmeth-
ods.SectionIV presentsour experimentalresultsand �nally ,
SectionV concludesthe paperandsuggestsfuture work.
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Fig. 1. Someexampleaccelerationvectorsfor different terrain types.

I I . SVM-BASED TERRAIN CLASSIFICATION METHOD

In this section,we �rst give an overview over our method.
Thenwe presentfeatureextractionandSVM classi�cation in
moredetail.

A. MethodOverview

Our methodconsistsof a trainingphaseanda classi�cation
phase.In thetrainingphase,we �rst drive therobotaroundon
known terrain to collect z-accelerationdataat 100 Hz. Then,
we split the accelerationinto 1� 100 vectors,i.e. eachvector
represents1 s of robot travel. Additionally, we label each
vector with its terrain type. Then we transformeachvector
to the frequency domain (SectionII-B). Next, we normalize
eachfeature(= frequency component)to mean0 andstandard
deviation 1. In the last step,we train an SVM on the labeled
featurevectors(SectionII-C). The training phaseis an of�ine
step,becauseit is computationallyintensive.

In theonlinetestphase,therobotdrivesaroundonunknown
terrain. After eachsecond,we createa 1� 100 acceleration
vector, transformit to the frequency domain and normalize
it using the sameparametersusedduring training. Then,we
classify the resultingtestvectorusingthe trainedSVM to get
the predictedterrain type.

B. Feature Extraction

The vibration vectorscollectedby the robot containaccel-
erationvaluesmeasuredperpendicularto the groundsurface.
Fig. 1 shows someexamples.Exceptfor grass,thesignalsare
very similar. Thus, it is bene�cial to transformthesevectors
to a moresigni�cant representation.

In [20], we compareddifferent representations:a Fast
Fourier Transform(FFT) representationassuggestedby Sad-
hukhan [14], a log-scaledpower spectraldensity (PSD) as
used by Brooks and Iagnemma[3], and a more compact
representationbasedon simple featurescalculatedfrom the
accelerationvector (e.g. the numberof sign changes).In our
experimentsusingdataof the hand-pulledcart, we found the
simple featuresto work best.However, for the datacollected
by our robot,thefrequency-basedrepresentations,i.e. theFFT
andthe log-scaledPSD,work better. Thus,for the restof this

paper, we will useeithera log-scaledPSDor a 128-pointFFT
of the accelerationdataas featurevector.

C. SVMClassi�cation

After featureextraction, we use an SVM [6] to learn for
eachterraintypea separationfrom all otherterraintypes(one-
versus-restclassi�caton). Later on, an unseentestpatternwill
beassignedto thatclass,for which thedistanceto thedecision
boundaryis largest.

SVMsbelongto thefamily of kernelmethods[16]. Theidea
is to constructa separatinghyperplanebetweentwo classesof
points, suchthat the margin betweenthe hyperplaneand the
pointsclosestto it becomesmaximal.Nonlinearclassi�cation
can be achieved by �rst mappingthe original data to some
high dimensionalfeaturespacein a nonlinear fashion.This
computationis usually doneimplicitly by meansof a kernel
function,whichde�nesa dotproductbetweenpointsin feature
space.It is alsopossibleto allow for asmallnumberof training
errorsby meansof a so-calledsoft margin parameterC that
regularizesthe trade-off betweenmaximizing the margin and
minimizing the training error.

In our casewe employ a Radial Basis Function (RBF)
k(x; y) = exp(�k x � yk2=2� 2) as kernel function, wherex
andy aretwo featurevectors.The width � of the RBF kernel
togetherwith thesoft margin parameterC aretunedvia a sys-
tematicsearchonthegrid log2 � 2 f �̂ =4; :::; 4�̂ g andlog2 C 2
f� 2; :::; 14g, where �̂ is set suchthat exp(� D=2�̂ 2) = 0:1.
D denotesthe length of the featurevectors.Each candidate
parametervector (� ; C) on the grid is evaluatedby 5-fold
cross-validation.Note that this automaticparameterselection
only involvesthe training data,but not the testdata.As SVM
implementationwe useLIBSVM [5].

I I I . ALTERNATIVE CLASSIFICATION METHODS

This sectionbrie�y describesthe classi�cation methodsto
which we compareour SVM-basedapproach.The FFT and
log-scaledPSDfeaturevectorsarethesamefor all approaches.

A. PNN

Usingprobabilisticneuralnetworksfor terrainclassi�cation
was suggestedby Sadhukhan[14]. As feature vector, he
usedthe frequency componentsof a 1024-pointFFT that are
between10 and20 Hz. However, in our experiments,we used
a 128-pointFFT and all frequency components,becausethis
led to betterresults.Pleasenote that we did not computethe
results presentedin Section IV using Sadhukhan's original
codegivenin [14], but usinganown implementationof PNNs.
Thereasonis thaton average,our codeproducedbetterresults
thanSadhukhan's code.

A PNN has three layers (Fig. 2). The �rst layer is the
input layer and consistsof d input units ai , where d is the
dimensionalityof thedata.Eachinputunit is connectedto each
of the n patternunits w i , wheren is the numberof training
vectors.Each of the pattern units is connectedto a single
category unit ci . The numberc of category units corresponds
to the numberof classes.
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Fig. 2. A probabilistic neural network consistingof d input units ai , n
patternunits w i andc category units ci .

In the training phase,the n normalizedtraining vectorsx i

arepresentedto thePNN.Basically, trainingconsistsof storing
eachtraining vector x i in the correspondingpatternunit w i .
Additionally, eachpatternunit is connectedto the category
unit correspondingto the label of the training vector.

For classi�cation, a normalizedtest vector y is presented
to the PNN. Eachpatternunit w i calculatesthe inner product
neti = w i

t y which is called the net activation. Then, the
patternunit w i emits the value e(net i � 1)=� 2

of a nonlinear
activation function to the attachedcategory unit ck . The
parameter� must be set by the user. In our experiments,we
found � = 0:4 to work best. Each category unit sums the
inputs from the patternunits. Finally, the category unit with
the highest accumulatedvalue gives the predictedlabel. A
moredetaileddescriptionof PNNscanbe found in [7].

B. Brooks's Method

In the approachpresentedby Brooks and Iagnemma,the
terraincanalsobelabeledas“unknown”, if theclassi�er is not
sureaboutthepredictedclass.We implementedthe algorithm
basedon the detaileddescriptionsgiven in [2] and [3].

BrooksandIagnemmatransformtheir accelerationdatato a
power spectraldensity(PSD).A log-scalingof the magnitude
reducesthe dominating effect of high-magnitudefrequency
components.Then, they use principal componentanalysis
to reducethe dimensionalityof their featurevectorsand to
separatethe signal from noise.They suggestto usek = 15
principalcomponents.However, we usedk = 30, becausethis
worked betterfor our data.

To separatefeaturevectorsof differentclasses,Brooksand
Iagnemmauselinear discriminantanalysis(LDA). They train
a set of pairwise classi�ers, one classi�er for eachpossible
pair of terrain types.Theseclassi�ers take into accountboth
the distribution of feature vectors within a single class as
well as the separationof the class means,and computea
discriminationvector d. To classify a test vector y , the dot
productd(y) = dy is computedandtheMahalanobisdistance
of d(y) to both terrain class means is calculated. If the
differencebetweenthe Malahanobisdistancesis < 1, the
terrainclassof y is “unknown” andboth involved classesget
an“unknown” vote.Otherwise,theclassmeanwith thesmaller
distancespeci�es the predictedlabel andcastsa positive vote
for the winning classanda negative vote for the otherclass.

If therearemorethantwo classes,a voting schemesumsup
thevotesof thepairwiseclassi�ers.The classwith the largest
numberof positive voteswins. If the numberof “unknown”

votes for this classis equal to or larger than the numberof
positive votes,or there are one or more negative votes, the
terrain is classi�ed as“unknown”.

C. kNN

The k-nearest-neighboralgorithm is a very simple classi-
�cation method.However, it often performs very well and
therefore,it is an importantbenchmarkmethod.

For training, simply all training vectorsx i are stored.To
classify a test vector y , the distancesdi of y to all training
vectors are computedand the k training vectors with the
smallestdistancesareselected.The predictedclassis the one
that is mostfrequentamongthe labelsof theselectedvectors.
If thereis a draw, oftensimply a randomlabel is chosenfrom
the winners. In our experiments,we found k = 10 to work
bestamongthe valuesk 2 f 1; 2; 5; 10; 15g.

D. DecisionTrees

Decision Treesare classicalmachinelearning approaches
basedon information theoreticalconsiderations.The version
J4.8usedin this paperis a Java implementationbasedon the
well known C4.5algorithm[13]. Both of themrely on theID3
algorithm and use entropy-basedmeasuresfor constructing
the classi�cation tree. The entropy E(X ) =

P
i � pi log2 pi

is a measurefor the disorder of a data collection X with
pi being the proportion of X belongingto the classi . This
measurecannow beusedfor de�ning theability of anattribute
A for classifying the examplesby calculating the expected
reduction of entropy if the data are ordered according to
A. This leadsto the information gain G(X ; A) = E(X ) �P

v2 V alues (A )
jX v j
jX j E(X v ) which describesthe discriminatory

power of an attribute A.
TheID3 algorithmconstructsthetreetop-down by choosing

the most descriptive attribute A in eachnodeH and adding
a new branchto H for eachvalue of A in the casethat the
attribute is nominal.Otherwisea binary split accordingto the
value of A is performed.Finally, eachleaf is labeledby the
mostcommonclassof the subsetof X representedby it.

E. Nä�ve Bayes

In contrastto the previously describedapproaches,Nä�ve
Bayes [13] does not perform a simple prediction but
a probability estimation of a class. The basic idea of
this algorithm is to assign each instance x the class
vi which is the most probable class considering its at-
tributes A i . Using Bayes' theorem, this can be ex-
pressedas c(x) = argmaxv i P(a1; :::; an jvi )P(vi ) =
argmaxv i P(vi )

Q
i P(ai jvi ). The training of the classi�er

simply consistsof estimatingthe P(vi ) and P(ai jvi ) based
on the distribution in the training data.

IV. EXPERIMENTAL RESULTS

To collectvibrationdata,weusedourRWI ATRV-Jroutdoor
robot (Fig. 3). We mounted an Xsens MTi sensoron an
aluminiumplateon top of therobot.TheXsensMTi measures
thez-accelerationperpendicularto theground�oor at 100Hz.
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Fig. 3. Our RWI ATRV-JR outdoorrobot “Arthur”.

TABLE I

NUMBER OF SAMPLES PER CLASS IN OUR DATASET

class 0.2 m/s 0.4 m/s 0.6 m/s total
indoor �oor 282 549 581 1412

asphalt 499 513 600 1612
gravel 311 323 392 1026
grass 482 572 631 1685

paving 314 573 567 1454
clay 423 579 605 1607

no motion 199 615 615 1429
total 2510 3724 3991 10225

In themiddleof July andin thebeginningof December, we
collectedvibrationdataby driving the robot over six different
terraintypes:indoor PVC �oor , asphalt,gravel, grass(i.e. the
soil underthe grass),paving andclay (the surfaceof a boule
court). As seventh “terrain type”, we addedsomedata from
situations in which the robot did not move. Fig. 4 shows
example imagesof the different surfaces.Additionally, we
usedthreedifferent robot speeds:about0.2 m/s, 0.4 m/s and
0.6 m/s. In total, our datasetcontains10225sampleswhich
correspondto about2 h 50 min of robot drive. Tab. I shows
the numberof samplesin our datasetin moredetail.

In our experiments,we used10-fold cross-validation.This
meansthat for each experiment,we split the data into 10
equally sizedparts.In eachof the 10 folds, we used9 parts
for training, and the remainingpart for testing.We obtained
the �nal resultby averagingthe resultsof the folds.

As quality measuresof a classi�cation result, we use the
true positiverate(TPR)andthe falsepositiverate (FPR).The
TPR for a classci is the percentageof testvectorsbelonging
to ci that were correctly classi�ed as classci . The FPR for
classci is thepercentageof testvectorsnotbelongingto ci but
wrongly classi�ed as classci . Good resultsare characterized
by a high TPR anda low FPR.

It is dif�cult to comparetheclassi�cationmethodof Brooks
to the other approaches,becauseit is the only one allowing
“unknown” predictions.These“unknowns” are not counted
as correct,so the TPR of Brooks's methodis expectedto be
lower than for the other methods.However, the “unknowns”
are also not regardedas false.Thus, the FPR is expectedto
be betterthan for the othermethods.

For the different classi�ers, often one of the FFT or log-
scaledPSD representationworks better than the other. Thus,
for each classi�cation method, we presentonly the results

Fig. 4. The different terrain typeswe usedin our experiments:1) indoor
�oor 2) asphalt3) gravel 4) grass5) paving 6) clay.

obtainedby usingthemoresuitablefeatures.For PNN, Nä�ve
BayesandJ4.8,we usedthe FFT representation,whereasfor
kNN andthe methodof Brooks,we usedthe log-scaledPSD.
For the SVM, we presentthe resultsfor both features.

In a �rst experiment,we consideredonly the threeterrain
classesgravel, grassand clay, becausethere may be many
environmentswere only a small numberof different terrains
exist. Fig. 5 shows the true positive rates obtainedby the
differentmethodsat differentspeeds.Additionally, the �gure
shows the resultswhenall speedsaremergedin onedataset.
Note that the TPRs in Fig. 5 are the averageTPRs of the
three classes.The results of the SVM lie between95 and
98% for 0.2 to 0.6 m/s and betweenabout 91 and 92% for
mixed velocities. Only the kNN methodperformssimilarly
well. The performanceof the PNN strongly dependson the
velocity; the TPRsarebetween72 and85%.The TPRsusing
Brooks's method,Nä�ve Bayesand J4.8 are around90% for
the individual velocities. However, on mixed velocities, the
TPRs drop to about 77-82%. The results show no general
trend on which velocity can be classi�ed best.However, all
methodsperform better on individual velocities than on the
mixed dataset.

Fig. 6 shows the false positive rates for the 3-classex-
periment. As expected,the method of Brooks outperforms
all otherapproaches.This methodprefersclassifyingsamples
as “unknown” to classifying them wrong. Among the other
approaches,SVM and kNN perform similarly well. PNN,
Nä�ve BayesandJ4.8performsigni�cantly worse.

In [3], Brooks and Iagnemmaalso presentedresultsof a
3-classexperimentincluding sand,dirt andgravel. They used
vibration datacollectedat 44.1kHz by the rover TORTOISE,
whosevelocity variedfrom 2 to 5 cm/s,andsplit thevibration
data into segmentsof 3 s. About 85.3% of the test vectors
werecorrectlyclassi�ed in their experiment,andabout10.7%
of thesampleswereclassi�edas“unknown”. Despitethevery
different experimentalsettings in our experiment, Brooks's
methodalsoperformswell. It achievesa a TPR of over 90%
on individual velocities,anda TPRof 77%on themixeddata.

In [14], Sadhukhanpresenteda 3-class experiment that
is very similar to our experiment.An RWI ATRV-Jr robot
collectedaccelerationsignalsat 100 Hz. The robot traversed
a testbedconsistingof grass,dirt and gravel at 0.2, 0.4, 0.6
and0.8 m/s. Sadhukhanobserved that the classi�cation rates
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Fig. 5. True positive ratesin the 3-classexperiment.
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Fig. 6. Falsepositive ratesin the 3-classexperiment.

increasewith the speedof the robot. At 0.2 m/s, about75%
of the testvectorswereclassi�ed correctly, whereasthe TPR
wasabout94.7%at 0.8 m/s.Our experimentsdid not con�rm
this �nding, perhapsbecauseSadhukhancollectedhis datain
a morecontrolledtestbedenvironment.

In a further experiment, we included all seven terrain
classes.The classi�cation performanceof all approachesde-
creasesdue to the more dif�cult dataset.Fig. 7 shows that
againour SVM approachperformsbest.TheTPRsfor 0.2m/s
andthemixeddatasetareabout80%,andfor 0.4 and0.6 m/s,
theTPRsareabout85-86%.This time, thekNN cannot match
the performanceof the SVM, but is best among the other
approaches.In total, Nä�ve Bayesis next best, followed by
PNN, the methodof Brooksandthe J4.8decisiontree.Using
mixedvelocities,theapproachof Brooksclassi�esabout26%
of the samplesas “unknown”, which lead to a low TPR.
The resultsalsoshow that datacollectedat 0.2 m/s aremore
dif�cult to classify thandatacollectedat higherspeeds.

Fig. 8 shows the falsepositive ratesof the 7-classexperi-
ment.The approachof Brooksagainperformsbest.However,
the difference to the SVM is smaller than in the 3-class
experiment.Onmixedvelocities,theFPRsof Brooks'smethod
and our SVM methodare approximatelyequal.The further
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ranking is kNN, followed by Nä�ve Bayes,PNN andJ4.8.
We also examinedhow well different terrainclassescould

be classi�ed. For this purpose,Tab. II shows the confusion
matrix of our SVM method.The entry (i; j ) of the matrix
shows how often (in %) samplesbelongingto classi were
classi�ed asclassj . To createthe confusionmatrix, we used
our most dif�cult dataset:seven terrain classesand mixed
velocities.

The confusion matrix indicates that a stopped robot is
correctlydetectedin mostof thecases.Indoor�oor is wrongly
classi�edasasphaltin about20%of thecases.In turn,asphalt
is misclassi�ed as indoor �oor in about 12% of the cases.
About 17.5% of gravel samplesare wrongly classi�ed as
paving andnearly10%of paving is classi�ed asgravel. These
pairs show that the most noticeablemisclassi�cationsoccur
betweenterrain types that are rathersimilar. Grassseemsto
be well distinguishablefrom all other types.

Tab. III comparesthe computationtimes of the different
classi�ers on two exampledatasetsA and B, measuredon a
3 GHzPCwith 1 GB of RAM. In the3-classdatasetA, we did
training on 3886vectorsandclassi�cation on 432 vectors.In
the 7-classdatasetB, we used9203 vectorsfor training and
1022 vectorsfor classi�cation. Both datasetscontain mixed
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TABLE II

CONFUSION MATRIX FOR 7-CLASS CLASSIFICATION USING SVMS. NM:

NO MOTION, IN: INDOOR FLOOR, AS: ASPHALT, GV: GRAVEL , GS:

GRASS, PV: PAVING, CL : CLAY.

NM IN AS GV GS PV CL
NM 99.93 0.07 0 0 0 0 0
IN 0 71.66 18.28 0.07 0.35 0.99 8.64
AS 0 11.85 74.13 0.43 0.50 3.91 9.18
GV 0 0.10 0.29 70.37 10.44 17.55 1.27
GS 0 0 0.06 3.02 93.83 1.96 1.13
PV 0 1.03 2.75 9.63 3.30 76.55 6.74
CL 0 2.55 7.41 0.87 2.93 7.15 79.09

TABLE III

COMPUTATION TIMES ON 3-CLASS DATASET A AND 7-CLASS DATASET B

Training (s) Classi�cation (ms)
A B A B

Brooks 14.104 100.670 0.047 0.150
Nä�ve Bayes 0.473 1.360 1.420 2.250
SVM (PSD) 3223.729 27213.897 0.835 3.086
SVM (FFT) 4251.225 29820.799 0.978 4.125
J4.8 8.990 41.750 19.221 38.612
kNN 7�10� 6 7�10� 6 27.076 65.218
PNN 0.054 0.130 66.464 135.692

velocities. Note that Tab. III shows the training times for
complete training, whereasclassi�cation times are average
valuesfor a singlevector.

The training times for the SVM (up to several hours)
are much higher than for the other methods,becausethe
gridsearchto tune the parametersis very time-consuming.
As training canbe doneof�ine, however, the time neededto
classify a test vector is more important.Using Nä�ve Bayes,
the SVM and the methodof Brooks, classi�cation takes at
mosta few milliseconds.Theclassi�cationtimesfor J4.8,kNN
andPNN aresigni�cantly higher.

V. CONCLUSION

In this paper, we presentedextensive experiments on
vibration-basedterrainclassi�cation.Theexperimentsshowed
that our SVM-basedmethodworks well on datacollectedby
a commonoutdoorrobot driving between0.2 and0.6 m/s.As
the classi�cation ratestendedto slightly increasewith higher
speed,we think that our methodwill alsowork for velocities
of about1 m/sor above.However, themoredifferentvelocities
are merged together in one dataset,the more dif�cult the
classi�cation.A solutioncould be to train separateclassi�ers
for differentrangesof velocities,andto selecttheappropriate
classi�er for a test vectorbasedon the velocity measuredby
the robot's odometry.

We also comparedour method to other approaches:an
methodsuggestedby BrooksandIagnemma,anapproachpre-
sentedby Sadhukhanand Moore basedon probabilisticneu-
ral networks (PNN), a k-nearest-neighborclassi�er, a Nä�ve
Bayes approachand a J4.8 decision tree. The experiments
showedthatamongthecomparedapproaches,our SVM-based
methodworkedbest.Despiteits simplicity, thekNN classi�er
also worked well. Unlike the other methods,the approachof
Brooks and Iagnemmacan classify a sampleas “unknown”,
which often led to a low true positive rate,but also to a low

false positive rate. PNN, Naive Bayesand the J4.8 decision
treeperformedworsethan the otherapproaches.

In the future,we plan to examineif it is possibleto learna
separationbetweenterrain classesfrom scratchwithout prior
knowledge.Additionally, wewill investigateif theacceleration
measuredin other directions,e.g. sideways, is also suitable
to capture the vibration, and if a combinationof different
directionscanfurther improve the classi�cation rates.
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