
1

Escaping from a Labyrinth with One-way Roads for
Limited Robots

Bernd Brüggemann∗ Tom Kamphans† Elmar Langetepe†
∗FKIE, FGAN e.V., Bonn, Germany

†Institute of Computer Science I, University of Bonn, Bonn, Germany

Abstract— In this paper, we consider the problem of navigating
a robot with limited abilities concerning computing power,
memory, and sensors through a labyrinth with one-way roads.
Escaping from a labyrinth is a task which is widely explored.
Many algorithms with different advantages and different areas of
application are known. Usually, labyrinths are given as polygonal
scenes or (directed) graphs. While scenes of the first type preserve
the geometry of the ’real’ environment, the latter preserve the
connectivity, which is crucial if there are passages that can
be traversed in only one direction (e.g., one-way roads). Our
approach combines both advantages. In this work we present
some properties of labyrinths with one-way roads. With the help
of these properties, we were able to develop algorithms that allow
a robot with very limited abilities to solve any ‘fair’ labyrinth.

Index Terms— navigation, path planning, low budget robots

I. INTRODUCTION

To navigate in an unknown environment is one of the
most important tasks that autonomous robots have to solve.
There are many different approaches to solve this problem.
Among them are, for example, SLAM algorithms [1], which
use probabilistic methods to build up a map to navigate.

Most algorithms that build a map at runtime, need robots
with adequate memory, computing power, or advanced sensor
techniques, such as laser sensors or video cameras with
extensive image processing.

But sometimes it is necessary to use smaller and cheaper
robots. For some reason, like cost or space, you might want
to use very limited robots. Limited in terms of very little
computing power, small amount of memory and very limited
sensory (e.g. only touch sensors). Therefore, there are a lot
of algorithms which move your robot where it wants to be,
without needing a map. In fact, the robot does not need much
more than a touch sensor and a compass. Examples are the
BUG algorithms [2, 3, 4, 5] or the Pledge algorithm [6].

The Pledge algorithm solves every possible labyrinth; that
is, a robot, placed in a labyrinth, will find the exit of the
labyrinth, using the following simple rules:
• move straight forward until an obstacle is hit (free move-

ment)
• turn right until the obstacle is at the left hand side, log

the turn (angle counter)
• follow the obstacle, while logging every turn made
• if the angle counter is equal to zero, leave the obstacle

and move straight forward
For a correctness proof see, for example, [6, 7]. Please note

that the range for the angle counter values is [0;−∞[; it does

p

q

v

Fig. 1. A labyrinth with an one-way road. p and q have to be on the boundary
of an obstacle. ~v gives the direction in which the robot may pass the one-way
road.

not compute modulo 360◦. It is not equal to the heading of
the robot. If the robot has turned three times 360◦ to the right
(i.e., the angle counter decreases by 1080◦), it needs to follow
the obstacle until it performed three full clockwise loops and
the angle counter gets zero.

The robot needs only a few abilities to follow these instruc-
tions: It needs touch sensors to detect an obstacle and to follow
it. Further, it has to log the turns. Odometry will do fine here.
Particularly as odometry does not need to be totally correct as
shown in [8].

But as soon as there are other structures in the labyrinth the
Pledge algorithm may fail. In this paper we analyze the effect
of one-way roads in a labyrinth.

The idea of adding one-way roads to the environment is
to model, for example, doors. Without an actuator, the robot
may pass a door by pushing it. But arriving from the other side
(i.e., when the robot has to pull the door), the way is blocked.
Other examples for one-way roads a robot are ramps. Coming
from one side, the robot can pass, but faced with the brink
from the other side, the way is blocked.

In Section 2 we will present some properties of labyrinths
with one-way roads. These properties help us to design algo-
rithms to solve such labyrinths.

Two algorithms are presented in Section 3 and 4. For other
solutions please refer to [9] and [10].

Section 5 shows an example implementation on a Khepera
II robot.

II. LABYRINTHS WITH ONE-WAY ROADS

First, let us give a precise model for one-way roads:



2

S

Fig. 2. An unfair labyrinth. The exit of this labyrinth is exactly one of the
two grey boxes. The robot does not know which one. Even with a mapping
algorithm, the robot cannot decide, which one-way road leads to exit and
which one-way road leads to the dead end. It has to test one one-way road.
But then the robot might be trapped. So there is no on-line algorithm which
can deal with “unfair labyrinths”.

Definition 1 (one-way road): A one-way road is a line in
the labyrinth that the robot can pass in one direction only.
It is given by a line pq with points p, q on boundary of an
obstacle, and by a vector ~v, which indicates the direction in
which the robot may pass the one-way road.

Thus, one-way roads in our labyrinth are simple lines
instead of areas in the labyrinth. Save from the points p an q,
no other point of the one-way road may lie on the boundaries
of obstacles (for an example see Fig. 1). In addition, two one-
way roads may not cross each other.

It may be impossible to leave a labyrinth with one-way
roads: Imagine, for example, the exit may be blocked by a
one-way road that leads inside the labyrinth, but not outside.
But even if there is a path from the start to the exit, there may
be dead ends behind one-way roads that trap the robot. Thus,
we consider only fair labyrinths.

Definition 2 (fair labyrinth): In a fair labyrinth, there is a
path from every point p to the exit.

This constraint is necessary, because even with the help of
maps, in some labyrinths it is impossible to decide if an one-
way road leads to a dead end. The robot may have to enter a
trap before recognizing it, see Fig. 2.

The one-way roads induce—in a very natural way—a parti-
tion of the labyrinth into maximal path-connected components.
We call these components regions.

Definition 3 (region): A region G is the maximum set of
robot positions for which the following is true:
∀pi, pq ∈ G(pi, pj : robot positions) exists a path from pi to
pq that neither crosses an obstacle nor an one-way road.

Regions are a powerful tool to understand the behavior of
robots in labyrinths and prove the correctness of labyrinth-
solving algorithms. Figure 3 shows and an example of a
labyrinth and its regions. Note that not every one-way road
contributes to an region. Further, in every labyrinth there is
exactly one outer region. The outer region is the area of the
labyrinth from which the robot can escape without crossing
any further one-way road.

Even if the labyrinth is fair, the Pledge algorithm may fail,
see Fig. 4: Using the Pledge algorithm, the robot enters the
one-way road, and gets trapped in an endless loop. If it would

Fig. 3. A labyrinth with one-way roads can be partitioned into regions.
Region G2 is the outer region. Note that not every one-way road (here one-
way road E1) contributes to an region.

not pass the one-way road, it would escape. Thus, for a maze-
solving algorithm it is necessary to decide, whether to enter
or to bypass a one-way road.

Lemma 1: The Pledge algorithm solves every fair labyrinth
with one-way roads, if the robot knows which one-way roads
it has to pass and which ones not.

Proof: To escape from the labyrinth, the robot has to
reach the unique outer region. Let this region be G1. If the
robot starts in G1 and passes no one-way road, the Pledge
algorithm will lead the robot to the exit. So let the robot start
in region Gm. Then there is at least one sequence of regions
Gm−1, Gm−2, ..., G1 that the robot has to pass on its way from
the start to the exit.

These regions are separated by one-way roads from each
other. The robot starts inside Gm. It is allowed to pass only the
one-way road that leads to Gm−1. So the Pledge algorithm will
lead the robot to Gm−1 (see above). Now, the robot may pass
only the one-way road to Gm−2, and so on. If the robot passes
only the one-way roads that leads it along this sequence—and
no other one-way road—the Pledge algorithm will lead the
robot to the exit.

Fig. 4. The Pledge algorithm may fail in labyrinth with one-way roads



3

q

a) b) d)c)

ppp
p

qq
q

Fig. 5. The four possible configuration for intersections between two non-free movements. Only case a) and d) may be achieved by Pledge algorithm. Only
in these cases the wall is at both parts of the path on the same side.

We call a set of instructions that tells the robot which one-
way road the robot has to enter is called a list of behavior.
Such a list of behavior can be given in two ways:
• Local list of behavior
• Global list of behavior

A local list of behavior tells the robot what it has to do at the
next one-way road that it meets. It might be given periodically,
such as the instruction: “Pass every second one-way road”.

A global list of behavior is a mapping from the set of one-
way roads to {“pass”, “do not pass”}.

Figure 4 shows—beside the fact that the Pledge algorithm
fails—another interesting property: in contrast to the path of a
robot steered by the Pledge algorithm in simple labyrinths, the
path in a labyrinth with one-way roads may have intersections.

Assume that a global list of behavior is used and that there
is no change in this global list during runtime.

Lemma 2: Let the robot use a fixed, global list of behavior
and let p and q be two segments of the robot’s path. If p
and q intersect each other then either p or q represents a free
movement (that is, the angle counter is zero).

Proof: If both p and q are free movements, they cannot
intersect: A movement is free when the angle counter is zero.
Therefore, free movements are parallel and point in the same
direction. Intersections involving at most one free movement
may occur, as shown in Figure 4.

If there are intersections while both p and q are non-free
movements, the robot must have an obstacle at its left-hand
side. As the path intersects, the walls of the obstacle intersect,
too. At the intersection point, parts of the walls have to be
one-way roads. In Figure 5, all possible configurations are
shown.

The cases b) and c) cannot be achieved by the Pledge
algorithm, because the wall is at different sides of the robot.
Using the Pledge algorithm, the robot always moves on
the same side of the obstacles while performing a non-free
movement. So only cases a) and d) can be achieved by the
Pledge algorithm. Consider case a): Assume w.l.o.g. that p is
reached before q. When p was reached, the vertical one-way
road had not been passed. Now, when q is reached, the vertical
one-way road has to be open. So the behavior for this one-way
road has been changed, but this contradicts to our assumption
that the list of behavior is fixed. The same arguments hold in
case d).

From Lemma 2 we conclude another interesting property of
labyrinths with one-way roads:

Proposition 1: Let the robot use the Pledge algorithm and
a fixed, global list of behavior in a fair labyrinth with one-way
roads. If the robot performs a closed, endless loop then there
is exactly one point where the robot’s path intersects itself.

Proof: (Sketch) If there are no intersections in the
endless loop, the robot makes either a full counterclockwise or
clockwise turn (i.e., ±2π) in every cycle. In the first case, the
angle counter increases by +2π per cycle; and, thus, it will
eventually get zero. But then the robot leaves the obstacle and
breaks the loop. In the second case, the counter decreases in
every cycle. Thus, the robot is trapped in a courtyard and the
labyrinth cannot be solved [6].

Now, let the robot move on an endless loop with intersec-
tions. If we cut the loop in the intersection points, we get
several Jordan arcs, each of them increases or decreases the
angle counter by 2π if the robot moves on the arc. Assume
that the loop has a different number of counterclockwise and
clockwise arcs: The angle counter will increase or decrease
by 2π every time the robot surrounds the loop. Using the
preceding arguments, such a loop cannot exist.

Therefore, there may be only loops with the same number
of counterclockwise and clockwise arcs; that is, the angle
counter in a fixed point on the loop does not change when
the robot moves on the loop, see Figure 6. Loops driven by

Fig. 6. An example for a loop with four Jordan arcs, two of them clockwise
and two counterclockwise. This loop cannot be achieved by the Pledge
algorithm because the free movements do not point in same direction.



4

the Pledge algorithm have a second property: After a free
movement, there is always a right turn. Hence, after hitting
an obstacle the robot either moves on a clockwise circle or it
leaves the obstacle before it performs a full counterclockwise
circle. Thus, a loop with n intersections yields n arcs where
the robot turns clockwise (because there is a free movement
for every intersection). So the robot needs additional n circles
to preserve the angle counter values. But this is possible only
for n = 1; that is, there is exactly one counterclockwise arc,
one clockwise arc, and one intersection.

III. CONTROL-WORD PLEDGE

The control-word Pledge is designed to search for a local
list of behavior. The idea of the control-word Pledge is adapted
from [11]. Hemmerling has given an algorithm that allows a
robot to reach any point in a labyrinth, equipped only with a
compass that shows the direction of the target. The robot does
not need to store anything connected with the labyrinth.

The control word in the control-word Pledge describes the
local list of behavior. Therefore, the alphabet Σ consists of the
following letters:
• “p”: pass the one-way road
• “n”: do not pass the one-way road

Every finite word, build with the help of Σ, matches a non-
periodic local list of behavior. As additional function we need
a third letter in Σ:
• “r”: reset the angle counter
Obviously, “r” does not tell the robot how to pass a one-

way road. An “r” always has to be followed by another letter.
Also it is senseless to perform two (or more) “r” in a row.

Lemma 3: From every one-way road there is a word in Σ∗

that leads the robot to the exit.
Proof: As shown in Lemma 1, for every start point there

is always at least one global list of behavior that leads the
robot to the exit. This list can easily be transformed into a
local list of behavior. Further, every local list of behavior can
be given by a word over Σ.

Of course the word, that leads the robot to the exit, is not
known in the beginning and depends on the start point.

Theorem 1: For every fair labyrinth it exists an finite word
wuni over Σ∗ that leads the robot from every one-way road to
the exit.

Proof: From Lemma 3 we know that there is a word
wa that leads from one-way road A to the exit. Now, assume
that robot starts at one-way road B. Performing the word wa

may lead the robot to the exit (and the algorithm terminates).
More likely, it will move the robot to another one-way road,
Q. This is the first one-way road for which the word wa has
no further command. If the robot resets now, we known that
there is a word wq that leads the robot starting in Q to the
exit of the labyrinth.

So the word wab = wa + r + wq leads from two one-way
roads (A and B) to the exit. The word wq assumes that the
robot starts with an angle-counter value of zero. To ensure that
this requirement is fulfilled we reset the angle counter before
processing wq.

Now, we consider a third one-way road C as start point.
Steered by the word wab, the robot reaches the one-way road
V , and so on. This can be done for each one-way road. This
construction yields the word wuni that leads the robot from
every one-way road to the exit.

Of course, wuni is not known a priori and, of course, wuni

is different for different labyrinths. But we know that it exists
and we know that it is finite (because wuni consists of a finite
number of finite words). Therefore, it is possible to search
systematically for it. That is, we enumerate—one by one—
each word in Σ∗ and evaluate it character by character in the
following way:

Each time the robot driven by the Pledge algorithm reaches
a one-way road, it behaves as the current character demands.
At first the robot applies every word over Σ∗ which consists
of one letter. If the robot leaves the labyrinth, we are done.
Otherwise the robot chooses every two-letter word and so on.
By Theorem 1, the robot will find the exit at the latest when
it finds the word wuni (perhaps the robot finds the exit much
earlier, but that would be by chance). The performance of our
algorithm depends on the length of the word wuni. Therefore,
we give an upper bound for the length of a word from a single
one-way road to the exit.

Lemma 4: The length of a control word that leads from one
one-way road to the exit, is in O(N) where N is the number
of one-way roads.

Proof: The robot starts in the region Gm. The path to
the exit is a sequence of regions Gm−1, Gm−2..., G1. If the
robot hits an one-way road that leads from Gi to Gi−1 it will
pass the road, otherwise it will not pass. So for every one-way
road there has to be only one decision. Therefore, we need N
letters either “p” or “n”. As mentioned above it is reasonable
to use one “r” in a row. So we can add at most N “r”’s. So
one word consists of 2N letters and is in O(N).

Theorem 2: At most 3O(N2) characters have to be tested
before finding wuni.

Proof: The word wuni is a concatenation of N words
with 2N letters, where N is the number of one-way roads.
Therefore, wuni has length at most 2N2.

This means that the robot has to check every word up to
a length of 2N2 until it finds the exit. The total number of
characters tested is:

2N2∑

i=1

3i =
1
2
· 3(2N2+1) − 3

2
∈ 3O(N2)

It is obvious that this algorithm is not usable in practice
for a large numbers of one-way roads. The search for a
global behavior lists might give a more efficient algorithm,
but requires the capability of distinguishing one-way roads.

IV. BINARY PLEDGE

As shown in section 2, there are lists of behaviors that lead
the robot out of a labyrinth with one-way roads. The binary
Pledge searches for an appropriate global list of behavior.

The idea of the binary Pledge is to map a list of behavior
to a binary number: Every digit in the number determines the



5

behavior of one one-way road. ‘0’ means ‘do not pass’ and
‘1’ means ‘pass’. Hence, every possible list is mapped to a
N -digit binary number, where N is the number of one-way
roads. Therefore, the algorithm searches for a global list of
behavior. The one-way road E1 is connected with the first
digit of the binary number, E2 is connected with the second,
and so on.

Now, the robot has to test all possible binary numbers until
it finds its way out. The robot no longer makes local decisions.
Instead, it has to determine if the chosen binary number leads
to the exit.

This decision is possible with the help of the one-way roads
Using the one-way roads as landmarks, we can determine if the
robot drives a loop or not. Sometimes it is acceptable that the
robot drives in a loop, for example in a spiral-like environment.
But sometimes a loop indicates that the robot cannot find the
exit with the current binary number (i.e., the current global
behavior), so the binary number has to be changed.

To decide whether a loop is an endless loop we use the
angle counter. We observe the changes in the angle counter at
the one-way roads over time. There are four possibilities how
the counter changes:
• No angle-counter value changes
• Every angle-counter value on every one-way road be-

comes smaller over time
• At least at one one-way road the angle-counter value

becomes bigger over time
• No angle-counter value becomes bigger but at least one

becomes smaller
Note that such a statement is possible only when the robot has
driven the loop at least two times.

A special movement in the Pledge algorithm is the free
movement. To decide if the robot performs an endless loop
every criteria above has different meanings if there was a free
movement or not. So we have to check these two kinds of
movements with every of the four criteria:
• There was at least one free movement in the loop

– No angle-counter value changed over time: Because
the Pledge algorithm is deterministic, the robot will
perform the same loop on and on. The loop is
endless. The robot drives a path with one intersection
(see above).

– Every angle counter value on every one-way road be-
comes smaller over time: Because the angle counter
gets smaller, the free movement must vanish over
time. This is not an endless loop.

– At least at one one-way road the angel counter value
becomes bigger over time: Because the angle counter
cannot be positive, there will be a change in the path
in time. This is not an endless loop.

– No angle counter value becomes bigger but at least
one becomes smaller: Same as former. The free
movement will become impossible over time. The
path will change so this is not an endless loop.

• There was no free movement in the loop
– No angle counter value changed over time: In this

case, the robot’s path will also never change, so this

no free movement free movement
at least one angle path will endless
counter becomes bigger change loop
every angle counter endless endless
stay equal loop loop
every angle counter endless path will
becomes smaller loop change
no angle counter becomes
bigger, but at least one endless path will
becomes smaller loop change

TABLE I
THE POSSIBLE CHANGES FOR THE ANGLE COUNTER OVER TIME AND THE

CONCLUSIONS (I.E., ENDLESS LOOP OR NOT).

path is an endless loop.
– Every angle counter value on every one-way road

becomes smaller over time: There is no free move-
ment; therefore, the robot is trapped inside an inner
courtyard. This is an endless loop.

– At least at one one-way road the angel counter value
becomes bigger over time: The angle counter will
become zero, so a free movement will occur. This is
not an endless loop.

– No angle counter value becomes bigger but at least
one becomes smaller: There is no free movement
and no one will occur. This is an endless loop.

Therefore, we have found the criteria for a binary number
to lead to the exit or not (see table I). So we can describe the
algorithm:

1) move with Pledge algorithm until a one-way road is hit
2) store one-way road and angle counter value in list
3) test if robot has driven an loop

• if not: continue with 4)
• if there is an loop: Check if it is driven twice.

– if not: continue with 4)
– if driven twice, check if an endless loop criteria

is found
∗ if not: continue with 4)
∗ if endless loop is found, increment the binary

number, reset angle counter, and continue with
4)

4) handle one-way according to the current binary number.
Continue with 1)

Although it is unknown how many one-way roads exist in
the labyrinth, the robot can start with the assumption that there
is a one-way road. It starts with the binary digit ‘0’. If there is
no one-way road, the robot will escape (due to the correctness
of the Pledge algorithm). If there is one, it also will escape
(due to try to pass and try not to pass). Let the first one-way
road hit be called E1. If there are more one-way roads they
will be added as additional digits to the binary number. Here
an example:

The robot knows the one-way roads E1, ..., E4. Therefore, it
has stored a 4-digit binary number to handle the list of behav-
ior. Let the current binary number be ‘0110’, where the digits
assigned to the one-way roads as follows: ‘E4, E3, E2, E1’.
If the robot hits an unknown one-way road, E5, it adds it:
‘E5, E4, E3, E2, E1’ and the current binary number is ‘00110’.



6

Fig. 7. The Khepera II with a CMUCam turret. The wires are only used
to submit status messages. The whole computation is done on the Khepera
itself.

In comparison to the control-word Pledge the performance
is much better. Obviously the maximal length of the binary
number is N ; therefore, the algorithm has to check at most
2(N+1) − 1 different binary numbers which means an consid-
erable saving of time.

V. IMPLEMENTATION ON KHEPERA II

The Khepera II, developed by the K-Team, matches our
definition of a limited robot. It has only small computing
capabilities due to limited memory and computing speed.
Further, its sensory, eight proximity sensors with a range of
approximate eight centimeters, limits the field of application.

The only extension we have done to the standard Khepera II
is a turret with a CMUCam (see Fig. 7). This was necessary to
give the robot the capability to distinguish between different
one-way roads. It is not possible to do any image processing
on the Khepera II because the transmitting of the picture into
the robot’s memory lasts about 10 seconds. So we used the
camera build-in function to track a specific color (for color
coding the one-way roads see Fig.8).

The experiments show that such a labyrinth could be solved
by the Khepera II using the developed algorithms. Neverthe-
less, we see that the identification of the one-way roads with
the help of color marks is faulty, so that the algorithm may
fail in some situations. On the other hand, errors from the
proximity sensors (here used as touch sensors) and odometry
errors showed no effect on the ability of the algorithm to solve
the labyrinth.

VI. CONCLUSIONS

In this paper we considered labyrinths with one-way roads.
First, we examined some properties of such labyrinths. With
the help of these properties we have shown that it is possible
to design algorithms that lead the robot to the exit. Further
we believe that these properties may help us to examine other
classes of algorithms. For example, we might consider the
influence of one-way roads to BUG-like algorithms.

We developed two algorithms to solve every fair labyrinth
with one-way roads and prove their correctness. We considered

Fig. 8. An example toy world labyrinth in which we tested the one-way
road pledge. The marks on the floor represent the one-way roads. A red color
indicates the side from which the robot may not pass. Other colors are used
to identify each one-way road and the side, from which the robot may pass.

a robot with very limited abilities. However, we assume that
the sensors are error-free. A future work might be to consider
error-prone sensors (particularly the one-way identification)
and determine in which ways the algorithms will be affected.

We have shown that it is possible to expand a well-known
algorithm such as the Pledge algorithm to solve tasks which
the original algorithm cannot solve, without loosing the ability
to prove its correctness. Future work may concern to expand
it to solve more complex, maybe real world environments.

REFERENCES

[1] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map building
and localization for an autonomous mobile robot,” 1991, pp. 1442–1447
vol.3.

[2] N. Rao, S. Kareti, W. Shi, and S. Iyenagar, “Robot navigation in
unknown terrains: Introductory survey of non-heuristic algorithms,”
1993.

[3] A. Sankaranarayanan and I. Masuda, “A new algorithm for robot
curvefollowing amidst unknown obstacles, and a generalization of maze-
searching.” in Proceedings of 1992 IEEE International Conference on
Robotics and Automation, 1992, pp. 2487–2494.

[4] A. Sankaranarayanan and M. Vidyasagar, “A new path planning al-
gorithm for a point object amidst unknown obstacles in a plane.” in
Proceedings of IEEE Conference on Robotics and Automation, 1990,
pp. 1930–1936.

[5] V. J. Lumelsky and A. A. Stepanov, “Dynamic path planning for a
mobile automaton with limited information on the environment.” in IEEE
transactions on Automatic control, 1986, pp. 1058–1063.

[6] H. Abelson and A. diSessa, Turtle Geometry. MIT Press, Cambridge,
MA, 1980.

[7] R. Klein, Algorithmische Geometrie. Springer, 2005.
[8] T. Kamphans and E. Langetepe, “The pledge algorithm reconsidered

under errors in sensors and motion,” in Proc. of the 1th Workshop
on Approximation and Online Algorithms, Lecture Notes Comput. Sci
2909, Springer, 2003, pp. 165–178.

[9] B. Brüggemann, “Entkommen aus unbekannten Labyrinthen mit Ein-
bahnstrassen,” Master’s thesis, Rheinische Friedrich Wilhelms Univer-
sität Bonn, 2006.

[10] B. Brüggemann, T. Kamphans, and E. Langetepe, “Leaving an unknown
maze with one-way roads,” in Abstracts 23nd European Workshop
Comput. Geom., Graz, Austria, 2007, pp. 90–93.

[11] A. Hemmerling, “Navigation without perception of coordinates and
distances,” Berkeley, CA, Tech. Rep. TR-93-018, 1993.


