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Abstract—
In this paper we present a real-time scene reconstruction al-

gorithm for mobile robots which is applicable for visual collision
avoidance and online map building. Our method processes a
sequence of images which are taken by a single camera mounted
on a mobile robot. In contrast to similar monocular shape-
from-motion algorithms, we combine two different approaches:
A classic motion stereo approach and an algorithm for scene
reconstruction based on extended Kalman filters. We show that
the disadvantages of the classic stereo approach are compensated
by the Kalman filter and vice versa. Our special method of ini-
tializing the Kalman filter leads to a faster convergence compared
to other Kalman based approaches that use different methodsfor
initialization. Moreover, we present a feature matching algortihm
which is faster and more reliable than the widely-used KLT-
Tracker in the domain of scene reconstruction.

Index Terms— monocular vision, shape from motion, extended
kalman filter, feature tracking

I. I NTRODUCTION AND RELATED WORK

Obstacle detection and collision avoidance are very impor-
tant capabilities of mobile robots. Vision-based approaches
provide a large field of view and supply a large amount of
information about the structure of the local surroundings.In
[12] and [14] appearance-based monocular obstacle detection
methods are presented in which each image pixel is classified
as belonging either to an obstacle or to the ground based
on its color appearance. The underlying assumption in those
methods is that the entire ground in each image has a unique
and constant color or structure - which is, however, not valid
for many environments. In [6] the optical flow is used to
detect obstacles. Unfortunately, computing the optical flow for
the entire image is very time expensive. To circumvent this
problem, the computation in [6] is done for a few pixels only.
Other monocular approaches try to recover a three-dimensional
model of the scene to gain the exact position of the obsta-
cles. Those approaches use a sequence of images which are
captured during the robot’s locomotion. Thus different two-
dimensional views of a scene are obtained and can be used for
the scene reconstruction. This classical problem of computer
vision is known as “shape-from-motion”.

We apply a sparse feature-based “shape-from-motion” ap-
proach that performs a scene reconstruction for distinctive im-
age points (image features). These image features are extracted
using the “FAST” high-speed corner detector [11].
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As we intend to use the reconstructed scene for obstacle
detection and collision avoidance, our camera is mounted in
front of the mobile robot and tilted towards the ground. This
results in two major problems we have to deal with:

1. The camera is moving along its optical axis: In a
sensitivity analysis Matthies and Kanade [9] proved that when
using forward motion, shape-from-motion leads to higher
uncertainties in the depth estimates. Compared to the ideal
lateral camera translation parallel to the image plane - which
is used in standard binocular approaches - the estimation must
be applied over a long base distance in order to achieve the
same accuracy.

2. Many objects are visible during a few frames of the
captured image sequence only while the robot is approaching
these obstacles. Hence, most image features cannot be tracked
over a large number of frames and the scene reconstruction
algorithm must be able to provide a reliable estimate by using
a few image measurements only.

To overcome the first problem, Matthies et al. [9] suggest
scene reconstruction using Kalman filters, since they can
integrate the depth and scene information over a long base
distance. Consequently, many shape-from-motion solutions
that have been researched and published in recent years are
based on Kalman filtering [16, 5, 1, 9]. Since these algorithms
operate in an incremental way, they have several advantages
compared to batch approaches such as bundle adjustment
[13]. Furthermore, Kalman filters can be computed in a very
efficient way allowing the reconstruction algorithm to operate
in real-time. This is essential for online map building and
obstacle detection.

Since Kalman filter based methods solve the reconstruction
problem in an iterative manner, the speed of convergence
depends on the choice of the initial estimate which is used for
the initialization of the Kalman filter. If unfavourable initial
estimates are used, Kalman filter based approaches tend to
suffer from a low speed of convergence, i.e. several iterations
must be processed to get a reliable estimation of the obstacle
positions. Unfortunately, as stated above, most image features
cannot be tracked over many frames and it is not possible to
compute enough iterations.

To prevent this problem, we have developed a new hybrid
approach for scene reconstruction. In contrast to the shape-
from-motion methods mentioned above, our hybrid algorithm
combines two completely different approaches: scene recon-
struction based on extended Kalman filters (EKF) and a
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“classical” correlation-based depth estimation approach.
The depth estimation algorithm is used to compute a reliable

initial estimate for the EKF, which then will refine the estimate
and recover the three-dimensional model. We show that this
novel kind of initialization leads to a significantly better
convergence of the filter.

On the other hand, it is well known that a correlation-based
algorithm for depth estimation sometimes produces outliers
if false matches are found during the search for correspond-
ing image points. In a sole correlation-based approach these
outliers would lead to virtual obstacles in the reconstructed
model which do not exist in the real scene. In contrast, the
EKF of our hybrid approach is able to robustly correct and
reduce these outliers.

These considerations show that by combining the mentioned
algorithms, the disadvantages of the traditional stereo approach
are compensated by the extended Kalman filter and vice versa.

II. SCENE-RECONSTRUCTION

Since depth estimation and scene reconstruction using
Kalman filtering are common techniques in computer vision,
they will not be described in detail here. Further information
can be found in [3, 16, 5, 1, 15].

Fig. 1 illustrates the complete architecture of our approach.

Fig. 1. Architecture of the hybrid approach

Our motion stereo approach is inspired by the work of
Bunschoten and Kröse [3], where a multi-baseline depth esti-
mation algorithm for panoramic image data is presented. Based
on their work, we have developed a similar correlation-based
algorithm for projective cameras. To obtain the image data,we
work with a single projective camera mounted on our mobile
robot to capture not only a sequence of imagesI0, . . . , In -
each taken from a different pose (i.e. position and orientation)
during the robot’s locomotion - but also the corresponding
odometry data measured by the robot drive. Hence, for each
image of the sequence the approximate position of the camera
is known, including uncertainty in odometry measurements
from systematic and non-systematic errors.

To correct these errors we use correspondences the feature
tracker has found over the frames of the image sequence to
estimate the pose of the camera. Since the translation vector of

the camera movement can be computed up to a scale only, we
are content with estimating the angle of roll and the pitch of
the camera, since inaccuracies in the orientation of the camera
cause the largest error in the scene reconstruction. Starting
with values provided by the robot’s odometry, both angles
are varied using Gauss-Newton iteration in order to minimize
the Sampson error, which is defined by the used image point
correspondences and the fundamental matrix.

Let Pi be the camera projection matrix corresponding to the
imageIi which can be computed from the robots odometry
using the corrected roll and pitch angle, then the 3D scene
point X is projected to the image point̃xi = PiX̃ of
image Ii

1. Let x0 be an image point of imageI0, then
the corresponding 3D scene pointX must be located on the
back-projected raỹX (λ) = P

+
0 x̃0 + λc̃0, whereP0

+ is the
pseudoinverse of the camera projection matrix andc0 is the
camera center of the camera in imageI0. If the 3D scene point
X is visible in a different imageIi from a different position,
it must be located on the projection of the ray on the image
plane of imageIi:

x̃
′

i (λ) = PiP
+
0 x̃

′

0 + λPic̃0 (1)

This equation is the parametric description of a line, which
is well known as “epipolar line”. In order to estimate the
depth of the image pointx0, we subsequently move along
the epipolar line by varying the parameterλ. For eachλ the
above equation gives the image coordinatexi on the epipolar
line corresponding to a scene point at depth1

λ
. For each

xi the similarity with pixelx0 is evaluated. As measure of
correlation we use the sum of absolute differences (SAD)
between windows centered atxi andx0. Using a correlation
window with 16 × 16 pixels, the SAD can be computed very
efficiently using MMX/SSE assembler instructions of today’s
CPUs. As in [3] and [10] we accumulate the SAD values
obtained for different imagesI1 . . . In for the samex0 andλ

(see Fig. 2). Eventually, the most likely depth value for the
given pixel x0 can be determined immediately by means of
the parameterλ which yields the minimal SAD. Therefore,
explicit triangulation is not necessary [3].

Fig. 2. For the samex0 in the reference imageI0 the SAD is computed
along the epipolar line and accumulated over several imagesI1 . . . In.

As shown in Fig. 1 the depth estimation is performed
for newly selected features only. For these new features no
correspondences are known from feature tracking since they

1In contrast to [7] we notate homogenous vectors asx̃ and Euclidean
vectors asx.
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were not selected in previous frames because the points were
not visible or too far away from the camera and did not
appear as features. In order to determine the depth of these
new features the described multi-baseline depth estimation
algorithm uses the current image and previously recorded ones.

The estimated depth is then used to compute the approxi-
mate 3D position of the feature in the real scene. This position
is used as a reliable initial estimate for the Kalman filtering,
which then will refine the estimate and recover the three-
dimensional model. In contrast to [5, 1] where one single EKF
with a large state vector is used to recover the 3D positions
of all features (model points), we use a separate EKF for each
feature point. According to [16] this leads to a linear space
and time complexity in terms of the number of features while
the loss in accuracy is small. Similar to [16] we choose the 3D
position of the feature point as state vectorx ∈ R3 which is
to be estimated. Sincex is the absolute position of the point
in relation to the world coordinate frame, it is independent
of the robot’s movementsu and the state transition function
simplifies to:

f (X,u,w) = X + w , (2)

wherew denotes a random variable with a normal probability
distribution.

The measurement of the 3D scene pointX is performed
by projecting it onto the image surface of the camera. To
obtain the Euclidean vector of the homogenous image point,
we divide by the homogenous coordinate and get the non-
linear measurement function:

h (X,v) =

(

P[1]X̃

P[3]X̃,
,
P[2]X̃

P[3]X̃

)T

+ v (3)

In this equationP[i] denotes thei-th row vector of the
projection matrixP.

As quoted in [15], the Kalman filter algorithm consists of
two steps: the ”prediction” step which computes an a priori
estimate and the ”correction” (or measurement update) step
where the a priori estimate is improved and an a posteriori
estimate is obtained by taking the observed measurement into
account. The observed measurement is the position of the
real image point in the current image which is provided by a
feature tracker that tracks each image point over consecutive
frames. With each new frame the tracked features will pass
through this Kalman filter cycle and their 3D positions will
be estimated more precisely in each iteration.

III. F EATURE TRACKING

In order to track the image features over several frames,
we apply a feature matching algorithm. First we select the
image features independently in each frame using the FAST
corner detector [11]. Similar to the IPAN feature tracker [4]
corresponding features are matched in subsequent frames then.
While the IPAN tracker solves a pure motion correspondence
problem by using three consecutive frames and solely kine-
matic constraints, we only use two frames. To eliminate the
resulting ambiguities, we additionally take the image similarity
into account.

Let It−1 and It be two consecutive frames of the image
sequence. In order to find the correspondencesx

(i)
t−1 ↔ x

(i)
t

between the previously selected image features of both frames,
possible hypotheses of matching points are chosen first. Each
hypothesish = (x

(i)
t−1,x

(j)
t ) consists of a pair of two poten-

tially matching pointsx(i)
t−1 andx

(j)
t of the framesIt−1 and

It (see Fig. 3).

Fig. 3. Possible matching hypotheses for features of the twoimagesIt−1

andIt. For one featurext in imageIt the distancec1 from the epipolar line
and the distancec2 from the predicted feature positionx∗

t
are indicated. Both

distances are used to compute the hypothesis cost function.

To reduce the number of hypotheses we use a maximum
speed constraint, i.e. we only choose pairs of image points
that satisfy

∥

∥

∥
x

(i)
t−1 − x

(j)
t

∥

∥

∥

2
≤ rmax (4)

wherermax defines the area around the last feature position
where corresponding features are searched for. Hence, it
defines a maximum speed at which a feature can cross the
frame within the image sequence. Features that are moving
faster can not be tracked. Therefore, an appropriate value for
rmax depends on the amount of the optical flow within the
image sequence.

For each hypothesis(x(i)
t−1,x

(j)
t ) we define a cost function

that will be derived in the following section. As proposed in
[8] we combine both, Guided-Tracking and Guided-Matching.
For each image pointxt−1 of the last frame we use its
reconstructed 3D positioñX∗ in order to predict its location
x
∗

t in the current frameIt:

x̃
∗(i)
t = PtX̃

∗(i) . (5)

Since we perform an initial depth estimation as described in
the previous section, an estimate of the 3D position is already
available for newly selected features. For features that have
been tracked over several frames more accurate estimationsof
the 3D positions were computed by the Kalman filters and their
location in the current frame can be predicted more precisely.

If the 3D position of the feature is estimated correctly,
feature pointsx(j)

t close to the predicted locationx∗(i)
t are

possible candidate matches forx
(i)
t−1. As metric we use the

squared Euclidean distance:

c1 =
∥

∥

∥
x
∗(i)
t − x

(j)
t

∥

∥

∥

2

2
. (6)

Additionally, corresponding image points must satisfy the
epipolar constraint, hence an image pointx

(j)
t that corresponds

to x
(i)
t−1 is located on or near the epipolar line that is induced by

x
(i)
t−1. The distance of the image pointx

(j)
t from that epipolar
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line can be computed as follows:

c2 =

∣

∣

∣
x̃

(j)⊤
t Fx̃

(i)
t−1

∣

∣

∣

√

(Fx̃
(i)
t−1)

2
1 + (Fx̃

(i)
t−1)

2
2

, (7)

whereF is the corresponding fundamental matrix which again
is computed using the robot’s odometry. Alternatively, the
Sampson distance [7] could be used, which, however, is
computationally more complex.

Although c1 andc2 are both related to the epipolar geome-
try, c2 does not rely on the estimated 3D position of the feature
and yields different costs thanc1 if the estimated 3D position
of the feature is not determined exactly yet.

As stated above, we also use a similarity constraint to
eliminate ambiguous matchings. For each pair of potentially
matching pointsx(i)

t−1 andx
(j)
t , we compute the similarity of

their neighborhood patterns. Again we use the SAD as measure
of correlation:

c3 = SADW (x
(i)
t−1,x

(j)
t ) (8)

Putting things together, we can specify our cost function as
weighted sum of the three functions defined above:

cost(x(i)
t−1,x

(j)
t ) = w1c1 + w2c2 + w3c3 (9)

The weights have been chosen empirically. Using the syn-
thetic image data that is described in section IV, we performed
different test series where we varied one weight while leaving
the others constant and measured the tracking error and the
number of tracked features. We finally chose the weights
that yield the smallest tracking error:w1 = 1, w2 = 3 and
w3 = 20.

From all hypotheses those with minimal matching costs are
chosen by a greedy algorithm. Hypotheses whose costs are
larger than a certain threshold are rejected. An appropriate
threshold depends on the image data.

Finally, all chosen hypotheses represent the corresponding
image points.

IV. RESULTS

In order to make a quantitative analysis and to be able to
compare our hybrid approach with others, we have rendered
a sequence of a synthetic scene consisting of 250 frames and
including the ground truth depth images using the raytracer
POV-Ray2. The ground truth depth images are used to measure
the tracking error and the error of the reconstructed 3D
model. We used realistic textures and added some Gaussian
image noise. To simulate odometry errors and the sway of the
camera, we added Gaussian noise to the camera position and
orientation while rendering the images. Fig. 5 shows a top
view of the synthetic scene and a rendered image. In the top
view the camera trajectory is plotted and its position at certain
frames is marked.

2http://www.povray.org/

A. Feature tracking

In Fig. 6 the KLT tracker and the guided feature matching
algorithm proposed in this paper are compared. Here we have
used Birchfield’s implementation of the KLT feature tracker
[2]. In the diagram, the tracking error is plotted for each
frame of the synthetic sequence. Due to guided matching,
our feature matching algorithm is able to track the features
more precisely. The KLT tracker produces larger tracking
errors especially during frames 150-171 and 180-200 when the
camera is moving around the two corners and during frames
80-145 where near obstacles induce a large optical flow.

In the left diagram of Fig. 4, the mean tracking error of both
feature trackers is shown for different feature counts. If more
features are tracked per frame, the tracking error increases
for both trackers but the error of the guided feature matching
approach remains smaller.
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Fig. 4. Left: Mean tracking error averaged over all frames of the synthetic
sequence for different feature counts.Right: Runtime that is needed for
feature selection and feature tracking depending on the number of features
that are selected in each frame. The time was measured on a Pentium 4 with
3.4 GHz.

Although the tracking error of the KLT tracker can also
be reduced if guided tracking is used and the tracker is
provided with the predicted feature locations as describedin
the previous section, the runtime of the KLT tracker remains
a problem for realtime applications.

Using the proposed feature matching algorithm, we were
able to reduce the runtime that is needed for feature tracking
dramatically as shown on the right plot of Fig. 4.

B. Scene reconstruction using synthetic data

In Fig. 7 the mean model error of the reconstruction is
plotted against the number of iterations to compare the effect
of different initial estimates on the speed of convergence:A
common way of initializing the Kalman filters is to use a
constant depth of the feature points as it is applied in [16].This
may be valid if the extensions of the object are limited and its
approximate distance to the camera is known. However, if the
camera is moving through an indoor or outdoor environment,
this kind of initialization yields large errors. The mean error
of a Kalman filter based algorithm which is initialized using
a constant depth is illustrated by the solid graph in Fig. 7. We
have chosen a depth of 3 meters, which gives the best results
for our synthetic scene.

The graph which is marked with +’s shows the mean error
if the filters are initialized randomly using a Gaussian noise
with a mean value of 3 meter and a variance of 1.
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Fig. 5. Left: top view of the synthetic scene. The camera position is marked for certain frames.Right: rendered image of the scene with additional image
noise
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Fig. 6. Mean tracking error for each frame of the synthetic image sequence. Due to the large optical flow while the camera isrotating and approaching near
obstacles, the tracking error of the KLT tracker becomes larger while with guided matching it remains small.

Another selection of the initial estimate is shown by the
graph which is marked with◦’s. Here, the depth of each
detected feature is chosen in a way that the height of the
initial feature position is zero, i.e. the features are initialized
on the ground plane. This kind of initialization has certain
advantages when used for obstacle detection because false
positive detections can be reduced. However, it leads to a huge
initial model error and therefore a poor speed of convergence.

The thick solid graph in Fig. 7 shows the mean error of
our hybrid approach. As expected, it converges significantly
faster due to the smaller error of the initial model provided
by the depth estimation. Compared to other plain Kalman
filter based algorithms our method achieves a much smaller
model error especially during the first few iterations whilethe
plain approaches need 5-10 iterations to accomplish the same
accuracy that our approach achieves instantly by the initial
depth estimation (the dashed line).
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Fig. 7. The hybrid approach presented in this paper (thick solid line)
converges faster than a plain Kalman filter which uses simpleheuristics for
choosing the initial estimates.

C. Scene reconstruction using real image data

To obtain real image and odometry data, the new robot
platform SCITOS3 with an on-board PC based on a 1.6 GHz
Intel Centrino processor is employed. For image acquisition a
1/4” CCD firewire camera (FireFly, Point Grey Research, Inc.)
with a wide angle lense (f=2.8 mm, FOV:≈ 65◦) is installed.
The camera is mounted at a height of 1.15 m and tilted by
36◦ towards the ground, and the image sequence is captured
using a frame rate of 15 frames/s.

Fig. 8 shows a map which was created while the robot was
moving through an indoor environment with a velocity of 0.6-
0.8 m/s. The estimated positions of the features are visualized
using red and orange dots. The estimated z-coordinate is used
only to determine if a point belongs to an obstacle or if it
lies on the floor, i.e. if the z-coordinate of a point is smaller
than a threshold of 0.2 m, it is regarded as belonging to the
ground plane and not included in the map. The gray map in
the background was built using a laser range finder. The light
gray areas of the laser map were visible to the laser range
finder only butnot to the front camera due to its narrower
field of view. However, that also means these obstacles were
never observed in front of the robot, making them insignificant
for collision avoidance. The dark gray areas of the map were
visible to the camera and can be used as reference. As to be
seen from Fig. 8 the accuracy of the map which was built
using our approach is similar to the laser-built reference map.
Moreover, our visual method is able to detect some obstacles
which are not “visible” to the laser because they are too small
and lie beneath the laser range finder. Those obstacles were
labeled manually and are highlighted by the red color in Fig.8.

3http://www.robots-for-research.com/
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Fig. 8. Middle: A map which was built using our algorithm while the robot was moving through an indoor environment. The gray map in the background was
built using a laser range finder (the light gray areas of the map were visible to the laser range finder only butnot to the front camera due to its narrower field
of view). The red parts of the map show obstacles that were solely detected by the visual approach but not by the laser rangefinder. Left and Right: Images
of two obstacles which were not visible to the laser range finder but that have been detected by our visual approach. The features are marked with squares.
The color indicates the height of the feature above the ground plane. (green: feature belongs to the ground plane, yellow: height≥ 0.2 m, red: height≥ 0.5 m)

Additionally, the corresponding camera images are shown for
two of these obstacles. It can easily be seen that one part of
the left obstacle is not included in the laser map since it is
too small and located below the laser plane. This would have
led to a collision if solely laser based navigation had been
used. Using our hybrid approach for visual obstacle detection
instead, this obstacle can be detected very well.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a hybrid shape-from-
motion approach which can be used for obstacle detection.
Our algorithm combines traditional multi-baseline stereodepth
estimation and Kalman filter based scene reconstruction in
order to compensate the disadvantages, which both methods
show if they are applied separately from each other.

In contrast to plain Kalman filter based algorithms which
often use simple heuristics to choose the initial estimates,
we initialize our filters using depth estimates computed by
a traditional stereo method. By carrying out a quantitative
analysis we were able to show the superiority of this novel
kind of initialization which results in better convergenceand
higher precision of the final feature estimates. This is essential
for reliable obstacle detection since most obstacles cannot
be tracked over many frames, and a moving robot must be
able to react on obstacles which appear in the foreground.
Moreover, we have shown that our approach can be used for
visual obstacle detection and is able to detect many obstacles
that cannot be “seen” by a laser range finder. By combining
a laser range finder and our visual approach, a very reliable
and robust obstacle detection can be achieved.

Using a resolution of 320x240 pixels, our algorithm can
process up to 40-50 images per second. This high performance
is reached by using the proposed efficient feature matching
algorithm that uses the estimated 3D position of each feature
to perform guided tracking.

As in many other monocular approaches we assume that
the robot moves in a static scene. During the initial depth

estimation dynamic objects are recognized and discarded
since no correspondence can be found along the epipolar
line. Estimating moving objects remains an open problem for
monocular scene reconstruction.
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