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Abstract— As we intend to use the reconstructed scene for obstacle
In this paper we present a real-time scene reconstruction al detection and collision avoidance, our camera is mounted in

gorithm for mobile robots which is applicable for visual collision front of the mobile robot and tilted towards the ground. This

avoidance and online map building. Our method processes a Its in t . bl h to deal with:
sequence of images which are taken by a single camera mounted €SUILS IN TWO major probiems we have 1o deal with.

on a mobile robot. In contrast to similar monocular shape- 1. The camera is moving along its optical axis: In a
from-motion algorithms, we combine two different approaches: sensitivity analysis Matthies and Kanade [9] proved thag¢mvh
A classic motion stereo approach and an algorithm for scene ysing forward motion, shape-from-motion leads to higher

reconstruction based on extended Kalman filters. We show tha cartainties in the depth estimates. Compared to the ideal
the disadvantages of the classic stereo approach are compaited lateral t lati lel to the i | whi

by the Kalman filter and vice versa. Our special method of ini- .a era c.amera rans ‘fi lon paraflel to the image p fine c '
tializing the Kalman filter leads to a faster convergence compared IS Used in standard binocular approaches - the estimatia mu

to other Kalman based approaches that use different methodfer  be applied over a long base distance in order to achieve the
initialization. Moreover, we present a feature matching agortihm  same accuracy.
which is faster and more reliable than the widely-used KLT- 2. Many objects are visible during a few frames of the
Tracker in the domain of scene reconstruction. : . . . .
o _ captured image sequence only while the robot is approaching

Index Terms—monocular vision, shape from motion, extended these obstacles. Hence, most image features cannot bedrack
kalman filter, feature tracking over a large number of frames and the scene reconstruction
algorithm must be able to provide a reliable estimate bygisin

b le d . d collisi id . afew image measurements only.
Obstacle detection and collision avoidance are very Impor-r, gyercome the first problem, Matthies et al. [9] suggest

tant capabilities of mobile robots. Vision-based appreschg.one reconstruction using Kalman fiters, since they can

prowde a large field of view and supply a large ampunt %tegrate the depth and scene information over a long base
information about the structure of the local surroundirigs. distance. Consequently, many shape-from-motion solstion
[12] and [14] appearanc_e-bas_ed mono_cular ob_stac_le dme(_:r_t'hat have been researched and published in recent years are
methods are prgsented in which each image pixel is cIassﬁBeéised on Kalman filtering [16, 5, 1, 9]. Since these algorithm
as .belongmg either to an obstacle or to the gr(_)unq bast%jerate in an incremental way, they have several advantages
on its colpr appearance. The undgrlymg a_ssumptlon In th_oé&npared to batch approaches such as bundle adjustment
methods is that the entire ground in each image has a uniqyg "r\, thermore, Kalman filters can be computed in a very
?nd constant color or strulctur6e ) r\]Nh'Ch S, lhzwev_er, notc(ij\/al fficient way allowing the reconstruction algorithm to ogter

or many environments. In [6] the opt_lca ow IS USe ©n real-time. This is essential for online map building and
detect obstacles. Unfortunately, computing the optical flor obstacle detection

thebelnnre r:mage IS very t!me6 e,ngnS'V?' Tofcwcumvlent tlh's Since Kalman filter based methods solve the reconstruction
problem, the computation in [6] is done for a few pixels only, ,p1em in an iterative manner, the speed of convergence

Oth(;erlm?nﬁcular approach_es trr]y to recover "’_‘_three]:d'r:naai'odepends on the choice of the initial estimate which is used fo
model of the scene to gain the exact position of the obsigy, jnisiglization of the Kalman filter. If unfavourable til

cles. Those approaches use a sequence of images WhiChegfﬁ"nates are used, Kalman filter based approaches tend to

captured during the robot’'s locomotion. Thus different -twoie;ncrer from a low speed of convergence, i.e. several inati

: . . st be processed to get a reliable estimation of the olestacl
the scene reconstruction. This classical problem of Compubositions Unfortunately

vision is known as “shape-from-motion”.

We apply a sparse feature-based “shape-from-motion”
proach that performs a scene reconstruction for distiadtiv
age points (image features). These image features are®dra
using the “FAST” high-speed corner detector [11].

|. INTRODUCTION AND RELATED WORK

as stated above, most imageifeat
cannot be tracked over many frames and it is not possible to
a(Eb'mpute enough iterations.

To prevent this problem, we have developed a new hybrid
approach for scene reconstruction. In contrast to the shape
from-motion methods mentioned above, our hybrid algorithm

This work is partially supported by TAB-Grant #2006-FE018¢ COMbines two completely different approaches: scene recon
H.M. Gross struction based on extended Kalman filters (EKF) and a



“classical” correlation-based depth estimation approach  the camera movement can be computed up to a scale only, we
The depth estimation algorithm is used to compute a relialdee content with estimating the angle of roll and the pitch of
initial estimate for the EKF, which then will refine the eséita the camera, since inaccuracies in the orientation of theecam
and recover the three-dimensional model. We show that tltisuse the largest error in the scene reconstruction. i8jarti
novel kind of initialization leads to a significantly bettewith values provided by the robot’s odometry, both angles
convergence of the filter. are varied using Gauss-Newton iteration in order to minémiz
On the other hand, it is well known that a correlation-basede Sampson error, which is defined by the used image point
algorithm for depth estimation sometimes produces ostliecorrespondences and the fundamental matrix.
if false matches are found during the search for correspondiet P; be the camera projection matrix corresponding to the
ing image points. In a sole correlation-based approachethésage I; which can be computed from the robots odometry
outliers would lead to virtual obstacles in the reconsidct using the corrected roll and pitch angle, then the 3D scene

model which do not exist in the real scene. In contrast, tfp@int X is projected to the image poink; = P;X of
EKF of our hybrid approach is able to robustly correct anishage I; . Let x, be an image point of imagé,, then
reduce these outliers. the corresponding 3D scene poifit must be located on the

These considerations show that by combining the mentionleaick-projected rayX (\) = P§ %o + A&, wherePy* is the
algorithms, the disadvantages of the traditional stergpoageh pseudoinverse of the camera projection matrix ands the
are compensated by the extended Kalman filter and vice versamera center of the camera in imagelf the 3D scene point
X is visible in a different imagd; from a different position,
[l. SCENE-RECONSTRUCTION it must be located on the projection of the ray on the image

Since depth estimation and scene reconstruction usipigne of imagel;:
Kalman filtering are common techniques in computer vision, - s _
they will not be described in detail here. Further inforroati X; (A) = PiPgX, + APiC 1)
can be found in [3, 16, 5, 1, 15]. This equation is the parametric description of a line, which

Fig. 1 illustrates the complete architecture of our apphoags well known as “epipolar line”. In order to estimate the

depth of the image poink,, we subsequently move along
the epipolar line by varying the parameter For each\ the

feature tracking seene reconstruktion above equation gives the image coordinaten the epipolar
4 Sclectnew Fnewt. sl line corresponding to a scene point at degth For each
/ features depth-estimation L. . . .
— > x; the similarity with pixelx, is evaluated. As measure of
Comemm T correlation we use the sum of absolute differences (SAD)
t\‘ image sequence|| " between windows centered &t andx. Using a correlation
y  track acked || shape-from-motion window with 16 x 16 pixels, the SAD can be computed very
features using Kalman filters . . L .
- efficiently using MMX/SSE assembler instructions of today’
z CPUs. As in [3] and [10] we accumulate the SAD values
obtained for different images, . .. I,, for the samex, and A
feature pool y (see Fig. 2). Eventually, the most likely depth value for the

inactive features active features given pixelxy can be determined immediately by means of
the parameten which yields the minimal SAD. Therefore,
explicit triangulation is not necessary [3].

Fig. 1. Architecture of the hybrid approach

Our motion stereo approach is inspired by the work of
Bunschoten and Krose [3], where a multi-baseline depth est
mation algorithm for panoramic image data is presentede®as
on their work, we have developed a similar correlation-tase
algorithm for projective cameras. To obtain the image daes,
work with a single projective camera mounted on our mobil
robot to capture not only a sequence of imadgs .., I, -
each taken from a different pose (i.e. position and oriériat
during the robot’s locomotion - but also the correspondirfig. 2. For the samex in the reference imagéo the SAD is computed
odometry data measured by the robot drive. Hence, for ezf#99 the epipolar line and accumulated over several iméges. Ir,.
image of the sequence the approximate position of the camera N o
is known, including uncertainty in odometry measurements 'S shown in Fig. 1 the depth estimation is performed
from systematic and non-systematic errors. for newly selected features only. For these new features no

To correct these errors we use correspondences the feafi@gespondences are known from feature tracking since they

tra(_:ker has found over the frames_ of the image s_equence 9n contrast to [7]1 we notate homogenous vectorsxasind Euclidean
estimate the pose of the camera. Since the translationn@fttovectors asx.



were not selected in previous frames because the points werket I,_; and I, be two consecutive frames of the image
not visible or too far away from the camera and did naiequence. In order to find the corresponderx.ﬁéjg s xf)
appear as features. In order to determine the depth of thégeween the previously selected image features of bothefsam
new features the described multi-baseline depth estimatipossible hypotheses of matching points are chosen firsh Eac
algorithm uses the currentimage and previously recorded.orhypothesish = (x@ux?)) consists of a pair of two poten-

t

The estimated depth is then used to compute the approag;my matching point5x§?1 and ng) of the framesl,_, and
mate 3D position of the feature in the real scene. This @usiti;, (see Fig. 3).

is used as a reliable initial estimate for the Kalman filtgrin

which then will refine the estimate and recover the three

dimensional model. In contrast to [5, 1] where one single EK ®

with a large state vector is used to recover the 3D positior

of all features (model points), we use a separate EKF for ea Xto_l\hprheses
feature point. According to [16] this leads to a linear spac o I
and time complexity in terms of the number of features whil ]
the loss in accuracy is small. Similar to [16] we choose the 3 fel

position of the feature point as state vectoe IR3 which is Fio 3. Possibl iching. hvooth for feat ¢ theimages]
. . . ) . 1g. o. 0ssible matching nypotheses Tor teatures O el eSit—1
.tO be e_Sumated' Since is the a.'bSOIUIe pOSItllo_n C?f the pomtandlt. For one featurex; in image/; the distance:; from the epipolar line
in relation to the world coordinate frame, it is independemhd the distance. from the predicted feature positiot} are indicated. Both
of the robot's movementa and the state transition functiondistances are used to compute the hypothesis cost function.
simplifies to:
f(X,u,w)=X+w, ) To reduce the n_umber of hypotheses we use a maxim_um
speed constraint, i.e. we only choose pairs of image points
wherew denotes a random variable with a normal probabilitthat satisfy
distribution.
. S Tmazx (4)
The measurement of the 3D scene pakatis performed 2

by projecting it onto the image surface of the camera. Tgherer,,,, defines the area around the last feature position
obtain the Euclidean vector of the homogenous image poifaere corresponding features are searched for. Hence, it
we divide by the homogenous coordinate and get the nQfsfines a maximum speed at which a feature can cross the
linear measurement function: frame within the image sequence. Features that are moving
P..X PuX T faster can not be tracked. Therefore, an appropriate value f
h(X,v) = < L , 22 ) (3) 7mae depends on the amount of the optical flow within the
P X, PyX image sequence.
In this equationP(; denotes thei-th row vector of the For €ach hypothe.s@cﬁl,xgj))_we define a cost function
projection matrixP. that will be derived in the following section. As proposed in
As quoted in [15], the Kalman filter algorithm consists of8] we combine both, Guided-Tracking and Guided-Matching.
two steps: the "prediction” step which computes an a priofior €ach image poink;_, of the last frame we use its
estimate and the "correction” (or measurement update) st&gonstructed 3D positioX* in order to predict its location
where the a priori estimate is improved and an a posteridh in the current framd;:
estimate is obtained by taking the observed measurement int 20 _p g+0) 5
account. The observed measurement is the position of the X = : ®)
real image point in the current image which is provided by a gjnce we perform an initial depth estimation as described in
feature tracker that tracks each image point over cons&culihe previous section, an estimate of the 3D position is direa
frames. With each new frame the tracked features will paggaijable for newly selected features. For features thae ha
through this Kalman filter cycle and their 3D positions Wilheen tracked over several frames more accurate estimations

HXE,Z - ng)

be estimated more precisely in each iteration. the 3D positions were computed by the Kalman filters and their
location in the current frame can be predicted more precisel
I1l. FEATURE TRACKING If the 3D position of the feature is estimated correctly,

In order to track the image features over several framdgature pointsx;”) close to the predicted locatiog; ") are
we apply a feature matching algorithm. First we select ttRossible candidate matches faf”,. As metric we use the
image features independently in each frame using the FASFuared Euclidean distance:
corner detector [11]. Similar to the IPAN feature tracke} [4
corresponding features are matched in subsequent fraemes th 1= ‘

While the IPAN tracker solves a pure motion correspondence o . )
problem by using three consecutive frames and solely kine-Additionally, corresponding image points must satisfy the

matic constraints, we only use two frames. To eliminate tr?epigglar constraint, hence an image poifft that corresponds
resulting ambiguities, we additionally take the image &inity 0 z;_, is located on or near the epipolar line that is induced by
into account. x§1>1 The distance of the image poixﬁj) from that epipolar

. N (12
x @ — x| (6)




line can be computed as follows: A. Feature tracking

In Fig. 6 the KLT tracker and the guided feature matching
algorithm proposed in this paper are compared. Here we have

G G ’ used Birchfield’s implementation of the eature tracker

) 2 ) 2 ( d Birchfield’s impl i f the KLT f ki

\/(Fxt—l)l +(F%24)3 [2]. In the diagram, the tracking error is plotted for each
whereF is the corresponding fundamental matrix which agaifr;ame of the synthetlc sequence. Due to guided matching,
. : ) . our feature matching algorithm is able to track the features
is computed using the robot’s odometry. Alternatively, the : :
more precisely. The KLT tracker produces larger tracking

Sampson_ distance [7] could be used, which, however, errors especially during frames 150-171 and 180-200 when th
computationally more complex.

Althouah d both related to th inol camera is moving around the two corners and during frames
oughc, andc; are both related o the epipolar ge0Megy 1 45 \yhere near obstacles induce a large optical flow.
try, co does not rely on the estimated 3D position of the featureIn the left diagram of Fig. 4, the mean tracking error of both

and yields different costs than if the estimated 3D position feature trackers is shown for different feature counts. dfren

of the feature is not determined exactly yet. features are tracked per frame, the tracking error inceease

As stated above, we also use a similarity constraint {8, hoth trackers but the error of the guided feature matghin
eliminate ambiguous matchings. For each pair of pOteW'alépproach remains smaller.

matching points<ff;)1 andxij), we compute the similarity of
their neighborhood patterns. Again we use the SAD as meas
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Putting things together, we can specify our cost function 1-5/8/9/8/( g 2
weighted sum of the three functions defined above: =1 -
é 0 lOM
(OIS
cost(x, 1, X, ) = wic1 + wacy + w3cs 9) f0 150 200 250 300  fo0 150 200 250 300
feature count feature count

The weights have been chosen empirically. Using the syn- _ .
.. . . . . Fig. 4. Left: Mean tracking error averaged over all frames of the syntheti
thetic image data that is described in section IV, we per&ﬂmsequence for different feature coun®ight: Runtime that is needed for
different test series where we varied one weight while legvi feature selection and feature tracking depending on thebeuarof features
the others constant and measured the tracking error and tflgbare selected in each frame. The time was measured ortiarRehwith

number of tracked features. We finally chose the weights

that yield the smallest tracking errow; = 1, wo = 3 and  Ajthough the tracking error of the KLT tracker can also
ws = 20. _ o _ be reduced if guided tracking is used and the tracker is
From all hypotheses those with minimal matching costs aggovided with the predicted feature locations as described

chosen by a greedy algorithm. Hypotheses whose costs @€ previous section, the runtime of the KLT tracker remains
larger than a certain threshold are rejected. An apprapriat problem for realtime applications.

threshold depends on the image data. Using the proposed feature matching algorithm, we were
Finally, all chosen hypotheses represent the correspgndiible to reduce the runtime that is needed for feature trgckin
image points. dramatically as shown on the right plot of Fig. 4.

B. Scene reconstruction using synthetic data

In Fig. 7 the mean model error of the reconstruction is
In order to make a quantitative analysis and to be able potted against the number of iterations to compare theceffe
compare our hybrid approach with others, we have renderefddifferent initial estimates on the speed of convergerce:
a sequence of a synthetic scene consisting of 250 frames &athmon way of initializing the Kalman filters is to use a
including the ground truth depth images using the raytrace@nstant depth of the feature points as it is applied in [TBis
POV-Ray. The ground truth depth images are used to measun@y be valid if the extensions of the object are limited asd it
the tracking error and the error of the reconstructed 3@&pproximate distance to the camera is known. However, if the
model. We used realistic textures and added some Gaussiamera is moving through an indoor or outdoor environment,
image noise. To simulate odometry errors and the sway of tthés kind of initialization yields large errors. The meamcer
camera, we added Gaussian noise to the camera position @hé Kalman filter based algorithm which is initialized using
orientation while rendering the images. Fig. 5 shows a t@pconstant depth is illustrated by the solid graph in Fig. . W
view of the synthetic scene and a rendered image. In the togve chosen a depth of 3 meters, which gives the best results
view the camera trajectory is plotted and its position atager for our synthetic scene.
frames is marked. The graph which is marked with +'s shows the mean error
if the filters are initialized randomly using a Gaussian Bois
2ht t p: / / wsw. povr ay. or g/ with a mean value of 3 meter and a variance of 1.

IV. RESULTS
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Fig. 5. Left: top view of the synthetic scene. The camera position is niafée certain framesRight: rendered image of the scene with additional image
noise
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Fig. 6. Mean tracking error for each frame of the synthetiagm sequence. Due to the large optical flow while the camewatdting and approaching near
obstacles, the tracking error of the KLT tracker becomegelawhile with guided matching it remains small.

Another selection of the initial estimate is shown by th€. Scene reconstruction using real image data

graph which is marked with's. Here, the depth of each 14 gptain real image and odometry data, the new robot
detected feature is chosen in a way that the height of th%itform SCITOS with an on-board PC based on a 1.6 GHz
initial feature position is zero, i.e. the features areiatited |ntel Centrino processor is employed. For image acquisiio

on the ground plane. This kind of initialization has certaif;4» ccp firewire camera (FireFly, Point Grey Research,)inc.
advantages when used for obstacle detection because fglsg 3 wide angle lense (f=2.8 mm, FOX 65°) is installed.

positive detections can be reduced. However, it leads t@e h4-he camera is mounted at a height of 1.15 m and tilted by

initial model error and therefore a poor speed of convergengge iowards the ground, and the image sequence is captured
The thick solid graph in Fig. 7 shows the mean error QIsing a frame rate of 15 frames/s.

our hybrid approach. As expected, it converges signifiyantl £ g shows a map which was created while the robot was
faster due to the smaller error of the initial model prowdeﬁwving through an indoor environment with a velocity of 0.6-

by the depth estimation. Compared to other plain Kalmafig /s The estimated positions of the features are vizedli

filter based algorithms our method achieves a much smallglig req and orange dots. The estimated z-coordinate i use
model error especially during the first few iterations white only to determine if a point belongs to an obstacle or if it

plain approaches need 5-10 iterations to accomplish the safag’ o the floor, i.e. if the z-coordinate of a point is smalle

accuracy.that_ our approach a_chleves instantly by the linitig 1 5 threshold of 0.2 m, it is regarded as belonging to the
depth estimation (the dashed line). ground plane and not included in the map. The gray map in
the background was built using a laser range finder. The light

= ii —=—hybrid approach (with inital depth estimation) gray areas of the laser map were visible to the laser range
S1o f%'vfl‘:fr‘af:;e(:n‘:v:tr:tg;";?g‘; initialisation finder only butnot to the front camera due to its narrower

5 4l o~ with initialisation on the ground plane field of view. quever, that also means_these ob_sta_cle_s were
% osl - - - plain depth estimation without Kalman filtering never qb.served in front of the robot, making them insignifica

B o6 for collision avoidance. The dark gray areas of the map were
E 04 visible to the camera and can be used as reference. As to be
go.z ***************************** seen from Fig. 8 the accuracy of the map which was built

& g42 using our approach is similar to the laser-built referenegm

:
0 5 10 15 20 25 30 Moreover, our visual method is able to detect some obstacles
iterations . o ”
which are not “visible” to the laser because they are too kmal

Fig. 7. The hybrid approach presented in this paper (thididsime) and lie beneath the laser range finder. Those obstacles were

converges faster than a plain Kalman filter which uses simplaistics for labeled manually and are highlighted by the red color in 8ig.
choosing the initial estimates.
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Fig. 8. Middle: A map which was built using our algorithm while the robot wasving through an indoor environment. The gray map in the pemknd was
built using a laser range finder (the light gray areas of thp mere visible to the laser range finder only Ioot to the front camera due to its narrower field
of view). The red parts of the map show obstacles that werdysdetected by the visual approach but not by the laser réinder. Left and Right: Images
of two obstacles which were not visible to the laser rangeefirmit that have been detected by our visual approach. Therdsaare marked with squares.
The color indicates the height of the feature above the gtqlane. (green: feature belongs to the ground plane, yeheight> 0.2 m, red: height> 0.5 m)

Additionally, the corresponding camera images are shown festimation dynamic objects are recognized and discarded
two of these obstacles. It can easily be seen that one parsifce no correspondence can be found along the epipolar
the left obstacle is not included in the laser map since it ime. Estimating moving objects remains an open problem for
too small and located below the laser plane. This would ham@nocular scene reconstruction.
led to a collision if solely laser based navigation had been
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