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Programming Mobile Robots by Demonstration
through System Identification

O. Akanyeti1, U. Nehmzow1, C. Weinrich1, T. Kyriacou1 and S.A. Billings2

Abstract— For certain mass-marked robot applications it is
essential to have cheap, efficient and reliable methods of sensor-
motor code generation, hand-programming is not a viable option
in such cases. We present a new method to program mobile
robots — “code identification by demonstration” — which algo-
rithmically transfers human behaviours directly to robot control
code, using transparent mathematical functions. In contrast to
traditional robot programming techniques, our method does
not require specialised technical or programming skills, but
translates demonstrated behaviour immediately into executable
code. This has obvious implications for the widespread use of
personal service robots.

The proposed method is fast and computationally cheap,
and has the additional advantage of generating transparent,
i.e. analysable controllers using polynomials, which permits
hypothesis formation and theoretical analysis of robot behaviour,
for example for stability and safety analyses.

We demonstrate the viability of this approach by teaching a
Scitos G5 mobile robot to achieve corridor following behaviour.

Index Terms— system identification, robot programming,
demonstration, polynomials

I. INTRODUCTION

Programming mobile robots by demonstration is not
new to robotics community [Demiris and Johnson, 2003].
The viability of this approach was demonstrated in
tasks such as maze navigation [Demiris and Hayes, 1996,
Hayes and Demiris, 1994], arm movement [Schaal, 1997] or
service robotics [Pardowitz et al., 2007]. Teaching through
demonstration has several advantages:

• Efficiency in generating robot controllers: Traditional
robot programming techniques are costly, time-
consuming and error prone [Iglesias et al., 2005].

• Little or no need for programming skills: The programmer
does not have to have any specialised programming skills,
end-users can “program” their robots individually accord-
ing to their own preferences and needs by demonstration.

• Implicit communication: No explicit communication, and
therefore no dedicated languages are needed between the
robot and the programmer. The programmer communi-
cates with the robot through the environment by demon-
strating the desired behaviour in the target environment.

Translating Human Behaviour Into Robot Control Code

Existing methods of robot training by demonstration involve
an interpretation, “understanding” of the demonstrator’s exam-
ple, and are typically concerned with a particular application
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scenario. In other words, they are specialised, and often require
specialised knowledge to operate successfully. The aim of our
research, in contrast, was to develop training by demonstration
methods that translate human behaviour directly into robot
control code, without using traditional computer programs,
programmer’s skills or dedicated robotics knowledge. We
achieve this goal by using system identification.

In [Nehmzow et al., 2007] we presented a novel method to
translate human behaviours into robot control code algorith-
mically, using system identification techniques such as Ar-
max (Auto-Regressive Moving Average models with eXoge-
nous inputs) [Eykhoff, 1974] and Narmax (Nonlinear Armax)
[Billings and Chen, 1998]. These techniques produce linear
or nonlinear polynomial functions that model the relationship
between the robot’s sensor perception and motor response. In
[Nehmzow et al., 2007] we demonstrated the viability of this
approach by teaching a Scitos G5 mobile robot to achieve wall
following and corridor following behaviour. Here, we extend
that work by scaling up the complexity of the task and by
improving the experimental method by adding a performance
metric that guides the data logging procedure.

Our method has three stages: i) The human operator
demonstrates the desired behaviour to the robot. ii) the robot
imitates the desired behaviour blindly (i.e. without using
sensor perception), using recursive, sensor-free polynomials.
During this run through the task the robot logs perception-
action data to obtain a sensor-based control model, and iii)
using the logged data, we obtain a sensor-based controller,
using transparent mathematical functions which capture the
fundamental relationship between the robot’s perception and
the desired motor response.

II. METHODOLOGY AND EXPERIMENTAL SETUP

A. Narmax system identification methodology

The Narmax modelling approach is a parameter estimation
methodology for identifying both the important model terms
and the parameters of unknown nonlinear dynamic systems.
For multiple input, single output noiseless systems this model
takes the form of equation 1. A detailed discussions can be
found in [Billings and Chen, 1998], [Korenberg et al., 1988,
Billings and Voon, 1986].
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y(n) = f (u1(n),u1(n−1),u1(n−2), · · · ,u1(n−Nu), (1)

u1(n)2,u1(n−1)2,u1(n−2)2, · · · ,u1(n−Nu)2,

· · · ,
u1(n)l ,u1(n−1)l ,u1(n−2)l , · · · ,u1(n−Nu)l ,

u2(n),u2(n−1),u2(n−2), · · · ,u2(n−Nu),

u2(n)2,u2(n−1)2,u2(n−2)2, · · · ,u2(n−Nu)2,

· · · ,
u2(n)l ,u2(n−1)l ,u2(n−2)l , · · · ,u2(n−Nu)l ,

· · · ,
ud(n),ud(n−1),ud(n−2), · · · ,ud(n−Nu),

ud(n)2,ud(n−1)2,ud(n−2)2, · · · ,ud(n−Nu)2,

· · · ,
ud(n)l ,ud(n−1)l ,ud(n−2)l , · · · ,ud(n−Nu)l ,

y(n−1),y(n−2), · · · ,y(n−Ny),

y(n−1)2,y(n−2)2, · · · ,y(n−Ny)2,

· · · ,
y(n−1)l ,y(n−2)l , · · · ,y(n−Ny)l)

y(n) and u(n) are the sampled output and input signals
at time n respectively, Ny and Nu are the regression orders
of the output and input respectively, d is the dimension of
the input vector and l is the degree of the polynomial. f ()
is a non-linear function and here taken to be a polynomial
multi-resolution expansion of its arguments. Expansions such
as multi-resolution wavelets or Bernstein coefficients can be
used as an alternative to the polynomial expansions considered
in this study.

The representation of the task as a transparent, analysable
model enables us to investigate the various factors that
affect robot behaviour for the task at hand. For in-
stance, we can identify input-output relationships such as
the sensitivity of a robot’s behaviour to particular sensors
[Roberto Iglesias and Billings, 2005], or make predictions of
behaviour when a particular input is presented to the robot
[Akanyeti et al., 2007].

B. Experimental Setup

The experiments described in this paper were conducted in
the 100 square meter circular robotics arena of the University
of Essex. The arena is equipped with a Vicon motion tracking
system which can deliver position data (x,y,z) using reflective
markers and high speed, high resolution cameras. The tracking
system is capable of sampling the motion at up to 100Hz with
sub-millimetre accuracy.

We used the Scitos G5 mobile robot DAX (figure 1). The
robot is equipped with a ring of 24 sonar sensors, uniformly
distributed. A Hokuyo laser range finder is also present on
the front part of the robot. This range sensor has a wide
angular range of 240◦ with a radial resolution of 0.36◦, and
distance resolution of less than 1cm. The robot’s colour cam-
era (640x480 pixels at 60 Hz) was not used in the experiments
reported here.

C. Experimental Procedure

Human demonstration: First, the human user demon-
strates the desired behaviour by performing it in the target
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Fig. 1. (a) DAX. The robot’s laser range finder has an angular coverage
of 240◦, with a radial resolution of 0.36◦ and distance resolution of less
than 1 cm. To decrease the dimensionality of the input space to the Narmax
model, we coarse coded the laser readings into 11 sectors (u1 to u11) by
averaging 62 readings for each 22◦ interval (b).The robot’s two degrees of
freedom used here were translational and rotational velocity. Positive and
negative translational velocities indicate forward and backward movement
respectively. Positive and negative rotational velocities indicate left and right
turns respectively.

environment. For the purpose of this paper we confined our
experiments to 2-dimensional navigation problems reflecting
the motion capabilities of our robot (2 degrees of motion,
translational and rotational). During this initial demonstration,
we log the x and y position of the human user with a sampling
rate of 50Hz. Once the operator’s trajectory is logged, we
compute the translational and rotational velocities of the
human by using consecutive (x,y) samples along the trajectory.

Obtaining sensor-free controllers: In a second stage, we
use the Narmax system identification method to obtain two
sensor-free polynomials, one expressing rotational velocity as
a function of time and past rotational velocities, the other
expressing the translational velocity as a function of time
and past linear velocities. We then use these two sensor-free
polynomials to drive the robot along the trajectory the human
had taken earlier, now logging sensor readings and velocities.
We use a sampling frequency of 10Hz at this stage.

Obtaining the final, sensor-based controllers: The sensor-
free controllers obtained at stage II are ballistic controllers
that drive the robot along the desired trajectory as long as the
robot is started from the same initial positions as the human.
However, for real-world applications it is essential that sensor
feedback is used to control the motion of the robot.

In the final stage we therefore use the Narmax system
identification method to obtain sensor-based controllers, using
the previously logged sensor-motor pairings (see also figure 2).
This controller can subsequently be used to control the robot
in the target environment, copying the original behaviour
exhibited by the human demonstrator.

III. EXPERIMENTS

We first demonstrate the viability of the proposed approach
by obtaining a corridor-following controller for DAX, using
human demonstration as outlined above. In a second experi-
ment we refine the sensor-free controller stage by augmenting
it with a low-level collision avoidance behaviour, and finally
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Fig. 2. Method. First, translational and rotational velocities of the human
are logged and low-pass filtered. This data is used in the second stage to
construct two sensor-free controllers. Finally, we use logged sensor-motor
data logged during the second stage to obtain two sensor-based controllers
(see also [Nehmzow et al., 2007]).

scale the complexity of the task by training the robot to
perform an continuous, circular corridor-following behaviour.

A. Experiment 1: Corridor Passing

In the first experiment, we demonstrated to the robot how to
pass through a U-shaped corridor of 150 cm width (figure 3),
by starting from the right side and walking to the end of the
corridor. During this time, the position of human was logged
in every 20ms.

Fig. 3. Experiment 1. The trajectory of the human demonstrator in the U-
shaped corridor environment. The width of the corridor is 150 cm. The oscil-
lation in the motion originates from the swinging motion of the demonstrator
perpendicular to heading direction. This is a general characteristic of two
legged locomotion, and was subsequently removed from the data by low pass
filtering.

We then used the Narmax system identification method to
obtain two sensor-free controllers for the translational velocity
and the rotational velocity. Both models are given in table I.

After obtaining these sensor-free polynomials, we use them
to drive the robot in the U-shaped corridor (figure 4). During
this run, the laser readings and the robot’s translational and
rotational velocities were logged every 100 ms.

Sensor Signal Encoding: In order to decrease the di-
mensionality of the input space to the Narmax model, we
coarse coded the laser readings into 11 sectors by averaging
62 readings for each 22◦ interval. We then used the Narmax
identification procedure to estimate the robot’s translational
and rotational velocities as a function of the coarse coded laser
readings (u1, u2, · · · , u11). Both models are given in table II.

Qualitative Model Validation: We then validated the
sensor-based models given in table II by letting them control
the robot in the U shaped corridor. We started the robot from

lv(n) = av(n) =
+0.347 −0.005
+0.004∗u(n,1) +0.001∗u(n,1)
−0.001∗u(n,1)2 +0.001∗u(n,1)2

−0.001∗u(n,1)3

+0.818∗ y(n−1)
+0.158∗ y(n−1)2

−0.276∗ y(n−1)3

+0.001∗u(n,1)∗ y(n−1)
−0.001∗u(n,1)2 ∗ y(n−1)

TABLE I
TWO SENSOR-FREE POLYNOMIALS TO DRIVE THE ROBOT “BLINDLY”

ALONG THE HUMAN TRAJECTORY GIVEN IN FIGURE 3. lv(n) IS THE

TRANSLATIONAL VELOCITY IN M/S, av(n) THE ROTATIONAL VELOCITY IN

RAD/S AT SAMPLING POINT n.

Fig. 4. Experiment 1. The trajectory of the robot under control of the sensor-
free polynomials given in table I. The models drive the robot along the human
trajectory given in figure 3 without using any sensory perception. During this
run, the robot logs its own perception and velocity commands. The logged
data is then used to obtain the final, sensor-based controllers which link the
perception of the robot to motor commands.

10 different locations, and observed correct corridor following
behaviour in all cases. The resulting trajectories are shown in
figure 5.

B. Experiment 2: Augmenting the Sensor-free Controllers with
low-level Collision Avoidance

As the sensor-free models do not use any perceptual in-
formation when controlling the robot, slight perturbations
or deviations in initial conditions can cause the robot to
collide with walls or get trapped in dead ends. Rather than
being robust, sensor-free control is highly sensitive to initial
conditions, which results in brittle control. Admittedly, the
sensor-free controller is only needed once to obtain sensor-
motor pairings for the acquisition of the final, sensor-based
model, but nevertheless we were interested to improve this
part of our experimentation, especially as we believe that these
problems need to be solved to scale up to more complex tasks.

The performance of the final, sensor-based controllers are
crucially dependent on how well the robot was able to follow
the human trajectory blindly, because the logged training data
set determines the quality of the sensor-based controller. We
therefore added a low-level collision avoidance behaviour to
the second stage of our model acquisition process, which
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lv(n) = av(n) =
+1.011 +0.570
−0.037∗u(n,1) +0.002∗u(n,1)
+0.164∗u(n,2) +0.069∗u(n,2)
+0.147∗u(n,3) +0.052∗u(n,3)
−0.128∗u(n,4) −0.181∗u(n,4)
−0.116∗u(n,5) −0.046∗u(n,5)
−0.051∗u(n,6) −0.049∗u(n,6)
−0.075∗u(n,7) −0.038∗u(n,7)
−0.051∗u(n,8) −0.020∗u(n,9)
−0.074∗u(n,9) −0.050∗u(n,10)
−0.131∗u(n,10)

TABLE II
TWO SENSOR-BASED POLYNOMIALS WHICH LINK THE ROBOT’S

PERCEPTION TO MOTOR COMMANDS IN ORDER TO ACHIEVE THE

BEHAVIOUR SHOWN IN FIGURE 3. lv(n) AND av(n) ARE THE ROBOT’S

TRANSLATIONAL VELOCITY IN M/S AND ROTATIONAL VELOCITY IN RAD/S

AT SAMPLING POINT n. u1 TO u11 ARE THE LASER BINS DEFINED IN

FIGURE 1.

Fig. 5. Experiment 1. Model validation: Ten trajectories of the robot under
control of the sensor-based controllers given in table II.

gave us the additional advantage that it can be used to obtain
feedback concerning the quality of the logged data (see below).

Integration of Collision Avoidance to sensor-free con-
trollers: We integrated the collision avoidance program with
the sensor-free controllers such that the robot is always driven
by the sensor-free controllers, unless it leaves a predefined
“safe zone”, when the collision avoidance mechanism takes
over. The safe zone was defined as having the shortest laser
range reading greater than 50 cm.

Besides preventing the robot from colliding with obstacles,
we also used the safety mechanism to provide performance
feedback. As any subsumption of the sensor-free controllers
by the collision avoidance behaviour is an indication that the
robot is deviating from the prescribed trajectory, we can use
the activation of collision avoidance as an indication of how
well the robot is following the target trajectory.

We therefore computed the ratio P of collision avoidance
time to total travel time as a performance measure, as given
in equation 2.

P =
total task time− total sa f ety time

total task time
, (2)

where total task time is the total time needed to complete

the trajectory and total sa f ety time is the total time in which
collision avoidance controlled the robot. Obviously, P varies
from 1 (perfect) to 0 (collision avoidance used 100% of the
time).

Obtaining the training data set for the final, sensor-based
models: We then used P to determine how much of the logged
data from each run should be used in the formation of the
general training data set, as follows.

As a first step, we did not use any data at all from runs
where P was lower than 0.4. From the remaining data, we
removed all data points logged in the 2-second time interval
before and after the safety mechanism took over control of
the robot. We then select training data from the remaining
data points in proportion to P obtained for that run.

C. Experiment 3: Circular Corridor Traversal

Scaling up from the corridor passing experiment 1, we
modified the environment by closing both ends of the corridor
and performing a repeated, circular motion in this environment
(see figure 6).

K

Fig. 6. Experiment 3. The trajectory of the demonstrator in a closed U
shaped corridor environment of 150cm width. He started from the right end
of the corridor, walked until the left end, then turned around at point K and
walked back to its starting location. Again we see a sideways oscillation in
the human’s motion, which is later filtered out.

Obtaining the sensor-free controllers: Using the real ve-
locity graphs of the human (figure 7), we divided the observed
human trajectory into three sections: i) going forward until the
end of the corridor, ii) turning around and iii) coming back to
the starting location. We represented each sub trajectory with
its own dedicated sensor-free lv and av models. These models
are given in table III.

Obtained the final, sensor-based controllers: Having ob-
tained the sensor-free models, we let the models (plus the hard-
wired collisions avoidance mechanism) drive the robot in the
U corridor environment, starting from 5 different locations.
For each run, we logged the laser readings and the robot’s
translational and rotational velocities every 100ms. Figure 8
shows two sample trajectories. When the robot was started
from the correct initial location, the models were able to
control the robot correctly, not invoking the collision avoid-
ance. However, a slight change in initial condition could cause
the robot to deviate from the desired trajectory, requiring the
hard wired collision avoidance to intervene. Sharp directional
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Fig. 7. Translational and rotational velocity graphs of the human demon-
strator trajectory shown in figure 6. We modelled the whole trajectory in
three separate sections: i) walking from the right end of the corridor to the
left (outward journey), ii) turning motion at point K (see figure 6) and iii)
walking back to the starting location (return journey). For each trajectory, we
obtained a separate sensor-free polynomial (see table III).

Fig. 8. Experiment 3. Two trajectories of the robot under control of the
sensor-free controllers. For trajectory 1 (shown in black) P is 1, because
the robot didn’t use the collision avoidance mechanism at all. However, for
trajectory 2 (red) P is 0.39. To form the training data set for the final, sensor
based controller, we therefore used all logged data from trajectory 1 and none
from trajectory 2, as P was below the threshold of 0.4 (see table IV).

changes visible in figure 8 indicate those locations where the
collision avoidance mechanism took control of the robot.

a) Formation of training data set: After logging per-
ception action data, we computed the performance of each
run based on the equation 2. We then combined the logged
files as described in the previous section. Table IV shows the
percentage of the logged data used in the formation of general
training data set from each run.

As before, we coarse coded the laser readings into 11 sectors
by averaging 62 readings for each 22◦ interval to obtain the
final, sensor-based Narmax models. In experiment 3 we used
all coarse coded laser readings in Narmax models.

Both the translational and the steering speed model are given
in table V.

sub trajectory 1
lv(n) = av(n) =

−0.103 +0.30
+0.018∗u(n,1) −0.004∗u(n,1)
−0.001∗u(n,1)2 +0.001∗u(n,1)2

+0.001∗u(n,1)3 −0.001∗u(n,1)3

−0.001∗u(n,1)4 +0.001∗u(n,1)4

sub trajectory 2
lv(n) = av(n) =

+0.000 0.400
sub trajectory 3
lv(n) = av(n) =

−0.103 −61.256
+0.018∗u(n,1) +0.459∗u(n,1)
−0.001∗u(n,1)2 −0.001∗u(n,1)2

+0.001∗u(n,1)3 +0.001∗u(n,1)3

−0.001∗u(n,1)4 −0.001∗u(n,1)4

TABLE III
THE SENSOR FREE CONTROLLERS TO FOLLOW THE HUMAN TRAJECTORY

SHOWN IN FIGURE 6 WHERE lv(n) AND av(n) ARE THE TRANSLATIONAL

VELOCITY (IN m/s) AND ROTATIONAL VELOCITY (IN rad/s) OF THE

ROBOT AT TIME INSTANT n. AS SHOWN IN FIGURE 7, THE TRAJECTORY IS

DIVIDED INTO THREE SUB TRAJECTORIES IN ORDER TO SIMPLIFY THE

PROCESS OF OBTAINING SENSOR FREE POLYNOMIALS.

run performance percentage used
1 1 100%
2 0.39 0%
3 0.76 76%
4 0.81 81%
5 0.55 55%

TABLE IV
EXPERIMENT 3. FORMATION OF THE TRAINING DATA SET TO OBTAIN THE

FINAL, SENSOR-BASED MODELS. THE TABLE GIVES THE PERFORMANCE

MEASURE (EQUATION 2) OF THE ROBOT DRIVEN BY THE SENSOR-FREE

POLYNOMIALS STARTING FROM 5 DIFFERENT LOCATIONS. IT ALSO SHOWS

THE PERCENTAGE OF THE LOGGED DATA USED IN THE FORMATION OF

GENERAL TRAINING DATA SET FROM EACH RUN.

lv(n) = av(n) =
−0.112 +0.361
−0.001∗u(n,5) −0.239∗u(n,5)
+0.212∗u(n,6) −0.065∗u(n,3)
+0.019∗u(n,2) −0.037∗u(n,7)
−0.009∗u(n,9) +0.035∗u(n,5)2

−0.033∗u(n,5)2 +0.005∗u(n,7)2

−0.056∗u(n,6)2 +0.014∗u(n,5)∗u(n,7)
−0.055∗u(n,2)2 +0.015∗u(n,3)∗u(n,7)
+0.020∗u(n,5)∗u(n,6)
+0.076∗u(n,5)∗u(n,2)
+0.063∗u(n,5)∗u(n,9)
+0.013∗u(n,6)∗u(n,9)
−0.056∗u(n,2)∗u(n,9)

TABLE V
EXPERIMENT 3. TWO SENSOR-BASED POLYNOMIALS WHICH LINK THE

PERCEPTION OF THE ROBOT TO THE DESIRED BEHAVIOUR SHOWN IN

FIGURE 6. lv(n) AND av(n) ARE THE TRANSLATIONAL VELOCITY (IN m/s)
AND ROTATIONAL VELOCITY (IN rad/s) OF THE ROBOT AT TIME INSTANT n

AND u1 TO u11 ARE THE COARSE CODED LASER READINGS STARTING

FROM THE RIGHT EXTREME OF THE ROBOT
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Fig. 9. Experiment 3. The trajectory of the robot under control of the sensor-
based controllers given in table V. The robot moved for about 10 minutes
without collision.

b) Model validation: Again, we used the final, sensor-
based models drive the robot in the closed U corridor envi-
ronment for 10 minutes. Figure 9 shows the trajectory; no
collisions occurred.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We introduce a new mechanism for achieving program-
ming by demonstration, based on algorithmically transferring
observed human behaviours directly into robot control code,
using transparent system identification techniques.

To obtain such sensor-motor controllers, we first demon-
strate the desired motion to the robot in the target environment.
Using this demonstration, we obtain recurrent, sensor-free
models that allow the robot to follow the same trajectory
blindly. During this motion the robot logs its own perception-
action pairs, which are subsequently used as training data
for the Narmax modelling approach that determines the final,
sensor-based models which identify the coupling between
sensory perception and motor responses as non linear poly-
nomials. These models are then used to control the robot.

The sensor-free motion stage of this process is critical,
because the robot is likely to deviate from the desired path
and collide with obstacles. We therefore enhanced our method
by incorporating a hard-wired collision avoidance mechanism
that takes over control if necessary: The robot is normally
driven under control of the sensor-free controllers, but collision
avoidance takes over once a minimum distance to the nearest
obstacle is reached.

We used the collision avoidance mechanism not only to
avoid obstacles, but also to evaluate the performance of the
sensor-free controllers: the performance quality P drops every
time the collision avoidance mechanism has to be invoked.

We then used P to decide how much of the logged data from
each episode would be used in the formation of the general
training data set used in obtaining the final, sensor-based
models. Finally, we tested the viability of our approach by
teaching the robot to move continuously in a closed U corridor
environment.

B. Future Work

So far we used an external, camera-based motion tracking
system to log the trajectory of the human demonstrator during
his initial demonstration of the desired motion. Because such
tracking systems are complicated to set up and expensive,
we are currently developing alternative methods to obtain
trajectory information, using the robot’s own sensor perception
such as video camera and/or laser.

Furthermore, we are investigating the scaling properties
of the presented approach to more demanding tasks such
as navigation or fine motion control, as well as methods of
analysing the obtained models in order to be able to modify
them off-line. The work already carried out and that proposed
forms part of our ongoing research to develop a theory of
robot-environment interaction.
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