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Abstract— Monte Carlo methods have been successfully
adopted for robot localization thanks to their flexibility in
distribution representation. However, these techniques are com-
putationally expensive and can hardly perform at the incoming
sensor data rate, when computation resources are limited. The
Real-Time Particle Filter (RTPF) is an algorithmic solution
conceived to make execution of a particle filter iteration feasible
within time constraints by means of a mixture representation
for the set of samples. RTPF requires an optimal balance of
the contribution of each set to the mixture, whose computation,
unfortunately, is quite difficult. In this paper, we provide a formal
discussion of mixture representation by considering the weight
mixture. We illustrate a novel solution for computing the mixture
parameters based on the notion of effective sample size. This
solution is less prone to numerical instability. Finally, we compare
the proposed approach with the original RTPF algorithm through
simulation tests and experiments.

Index Terms— Robot Localization, Real-Time Particle Filter,
Mixture of posterior

I. I NTRODUCTION

Global localization is the problem of estimating robot pose,
i.e. its position and orientation, with respect to an external
reference frame. The robot has at its disposal a map of the
environment, its motion information and its sensor observa-
tions. Bayesian filtering is a general probabilistic paradigm to
arrange motion and sensor data in order to achieve a solution in
the form of distribution of a random variable. While parametric
bayesian filters represent state as a continuous function (see
e.g. [8, 1]), inMonte Carlo localization(MCL) [4] the robot
belief about its current position is given by a set of samples
drawn from a proposal distribution and by importance weights
that measure the discrepancy of each sample from the correct
distribution. MCL inherits advantages ofsequential impor-
tance sampling with resampling(SIR) techniques: it allows
flexibility in representation of the posterior, which usually does
not have a given parametric model, and limits linearization
errors in motion and sensor model equations, which often lead
to poor performance and divergence of filter.

Unfortunately, particle filter (PF) complexity and perfor-
mance both depend on the number of samples: in global
localization a high density of samples helps to discover and to
converge towards the correct localization hypothesis. However,
for each additional sample a prediction, a correction and
a resampling step are performed. Furthermore, localization
performance also depends on sensor information, which could
be acquired at a rate higher than the filter update rate. Possible
solutions to this mismatch between sensing rate and processing
time include reduction of the number of samples, e.g. adapting

the size of the mixture [3], or of the number of observations,
i.e. discarding sensor data.

The Real-Time Particle Filter[6, 7] provides a tradeoff
between time constraints related to sensor management and
filter performance. Samples are partitioned into subsets among
observations over anestimation window. The size of each
partitioned subset is chosen so that a particle filter iteration
can be performed before a new observation is acquired. The
difference with standard PF with smaller sample set lies in
the representation of the posterior as a mixture of samples: at
the end of an estimation window the distribution consists of
the samples from each subset of the window. Mixture weights
determine how each partition set contributes to the posterior
and are computed in order to minimize the approximation error
of the mixture distribution. However, the original proposal
for computation of mixture weights, based on minimization
of Kullback-Leibler (KL) divergence [6, 7], is prone to bias
problems and numerical instability arising from the need to
perform a numerical gradient descent.

In this paper, we provide two main contributions: a formal
analysis for the evolution of mixture of posterior in RTPF
and a novel solution for the computation of mixture weights.
Each partition set posterior consists of samples, which are
drawn from motion model as proposal on the estimation
windows and whose importance weight depends only on a
single observation. Since the correction step is performed at
different time instants for each partition set, differences among
partition posteriors introduce a bias in estimation. We show
that the bias is an outcome of prominence of partition set that
minimizes KL-divergence and has pooreffective sample size
simultaneously. We then present an improved approach for the
computation of mixture weights based oneffective sample size
of the partition sets.

The paper is organized as follows. After outlining RTPF
in section II, a formal description of the bias problem and
the proposed novel approach are illustrated in section III.
Simulations and experiments are reported in section IV and
compared with the original RTPF. Finally, conclusion remarks
are given in section V.

II. REAL-TIME PARTICLE FILTERS

In particle filters, updating the particles used to represent
the probability density function (potentially a large number)
usually requires a time which is a multiple of the cycle
of sensor information arrival. Naive approaches, yet often
adopted, include discarding observations arriving during the



2

update of the sample set, aggregating multiple observations
into a single one, and halting the generation of new samples
upon a new observation arrival [7]. These approaches can
affect filter convergence, as either they loose valuable sensor
information, or they result in inefficient choices in algorithm
parameters.

An advanced approach dealing with such situations is the
Real-Time Particle Filters (RTPF) [6, 7], which will be briefly
described in the following. Considerk observations. The key
idea of the Real-Time Particle Filter is to distribute the samples
in sets, each one associated with one of thek observations. The
distribution representing the system state within an estimation
window will be defined as amixture of the k sample sets as
shown in Figure 1. At the end of each estimation window,

Fig. 1. RTPF operation: samples are distributed in sets, associated with the
observations. The distribution is a mixture of the sample sets based on weights
αi (labeledai in figure).

the weights of the mixture belief are determined by RTPF
based on the associated observations in order to minimize the
approximation error relative to the optimal filter process. The
optimal belief could be obtained with enough computational
resources by computing the whole set of samples for each
observation. Formally:

Belopt(xtk
) ∝

∫
. . .

∫ k∏
i=1

p(zti |xti) · p(xti |xti−1 , uti−1)

·Bel(xt0)dxt0 · · · dxtk−1 (1)

whereBel(xt0) is the belief generated in the previous estima-
tion window, andzti

, uti
, xti

are, respectively, the observation,
the control information, and the state for thei− th interval.

Within the RTPF framework, thebelief for the i − th set
can be expressed, similarly, as:

Beli(xtk
) ∝

∫
. . .

∫
p(zti |xti) ·

k∏
j=1

p(xtj
|xtj−1 , utj−1) ·Bel(xt0)dxt0 . . . dxtk−1 (2)

containing only observation-free trajectories, since the only
feedback is based on the observationzti

, sensor data available
at timeti. The weighted sum of thek believes belonging to an
estimation window results in an approximation of the optimal
belief:

Belmix(xtk
|α) ∝

k∑
i=1

αiBeli(xtk
) (3)

An open problem is how to define the optimal mixture
weights minimizing the difference between theBelopt(xtk

)

and Belmix(xtk
|α). In [7], the authors propose to minimize

their Kullback-Leibler distance (KLD). This measure of the
difference between probability distributions is largely used in
information theory [2] and can be expressed as:

J(α) =
∫

Belmix(xtk
|α) log

Belmix(xtk
|α)

Belopt(xtk
)

dxtk
(4)

To optimize the weights of mixture approximation, a gra-
dient descent method is proposed in [7]. Since gradient com-
putation is not possible without knowing the optimal belief,
which requires the integration of all observations, the gradient
is obtained by Monte Carlo approximation: believesBeli share
the same trajectories over the estimation windows, so we can
use the weights to evaluate bothBeli (each weight corresponds
to an observation) andBelopt (the weight of a trajectory is
the product of the weights associated to this trajectory in
each partition). Hence, the gradient is given by the following
formula:

∂J

∂αi
' 1 + Beli log

∑k
i=1 αiBeli
Belopt

(5)

whereBeli is substituted by the sum of the weights of partition
set i − th and Belopt by the sum of the weights of each
trajectory.

Unfortunately, (5) suffers from abias problem, which [7]
solve by clustering samples and computing separately the
contribution of each cluster to the gradient (5). In the next
section, an alternative solution is proposed.

III. A N ENHANCED RTPF

In this section we provide a formal investigation on the
motivation of bias in RTPF estimation in [7], and we propose
a new solution for mixture weights computation.

A. Bias in RTPF Mixture

In RTPF, samples belonging to different partition sets
are drawn from the same proposal, but their importance
weights depend on different observation likelihood functions
p(zti

|xti
), which are computed in different time instantsti.

Hence, the first source of disparity among partition sets is
the degree of proposal dispersion during the correction step.
A suitable measure of proposal dispersion at iterationti is
provided by the radius of the ball setB(ηxti

, r) ⊆ Rd, which
is centered on expected valueηxti

and includes a consistent
portion of the distribution ofxti

. The probability that a sample
falls in B(ηxti

, r) can be bound byr and the trace of the
covariance matrixΣxti

, since the following Chebychev-like
inequality holds:

P
(
xti

∈ B(ηxti
, r)

)
> 1−

tr(Σxti
)

r2
(6)

In the following, the probability of event given byB(ηxti
, r)

will refer to a proposal density function arrested inti:

π(xti
) =

∫
Rd×i

i∏
j=1

p(xti
|xti−1 , uti−1) dxt0 . . . dxti−1 (7)
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Then, given0 < ε < 1, a sample falls in a ball with at
least probabilityε when its radius is larger than thedispersion
radius:

rti,ε =
√

tr(Σxti
)/(1− ε) (8)

Parameterrti,ε provides a rough estimation for disper-
sion because only for unimodal PDF the ballB(ηxti

, rti,ε)
(briefly B hereafter) limits a region around a local maximum.
Furthermore, it is often the case thatxti

is a vector of
heterogeneous random variables (e.g. cartesian coordinates and
angular values), whose variances are mixed in the trace, with
the result that bound (8) largely overestimates the region.
However, the dispersion radius is a synthetic value and can be
adapted to multimodal distributions after decomposition into a
sum of unimodal hypotheses. Empirically, this decomposition
is achieved by clustering on samples.

By applying command control and updating robot position,
the dispersion radius increases together with the trace of
covariance matrix. IfGti is the Jacobian of motion model
computed in(ηxti

, uti), with Gti GT
ti
≥ 0 andtr(Gti GT

ti
) ≥

1 (hypotheses verified by a standard model like [11]), and
Σwti

is the covariance matrix of additive noise, then

tr(Σxti+1
) ≈ tr(Gti

Σxti
GT

ti
) + tr(Σwti

) (9)

Thus, we conclude thattr(Σxti
) ≤ tr(Σxti+1

) and that the
dispersion radius increases over the estimation window. A
more accurate estimation of how it increases could be obtained
with further hypotheses on the motion model, e.g. Lipschitz
continuity.

Since the proposal is more and more spread in the estimation
window and correction is performed at different times for each
partition, we want to investigate how the dispersion affects
importance weights. Observation likelihoodwti(x) = p(zti |x)
is usually more concentrated than the proposal, sometimes
peaked as shown in [5]. We assume that, given a properδ > 0,
region

L = {x ∈ B | wti
(x) > δ} (10)

covers a consistent portion ofwti(x). Thus, observation like-
lihood is bound inL by M = supx∈L wti(x) < ∞ (envelope
condition) and inB \ L by δ. Hence,wti

(x) ≤ λ(x) over B,
with

λ(x) =
{

M x ∈ L
δ else

(11)

The bounding functionλ(x) and setL are defined on ballB,
and in the following we will restrict the sampling domain toB
usingπ(xti

|xti
∈ B) as proposal. This assumption allows us

to consider the dispersion radius in the following discussion.
Moreover, this approximation is not so rough whenε is close
to 1.

The effective sample size[9] is a measure of the efficiency
of a set of samples in the representation of a target posterior:

neffti
=

1∑N
s=1 w̃2

ti
(x(s)

ti
)

(12)

=

(∑N
s=1 wti

(x(s)
ti

)
)2

∑N
s=1 w2

ti
(x(s)

ti
)

(13)

The above expression is achieved by substituting normalized
weightsw̃ti(x) with their expression. Maximizing the effective
sample size is equivalent to minimizing the variance of the
weights: it is easy to show with Jensen inequality thatneff is
bounded by the number of samplesN , which is obtained when
each weight is equal to1 and the variance is small. Bounds
on observation likelihood allow an approximation of expected
values of weight and square weight:

Eπ [wti
(xti

)|xti
∈ B] ≤ M HL + δ HB\L (14)

Eπ

[
w2

ti
(xti

)|xti
∈ B

]
≤ M2 HL + δ2 HB\L (15)

where HL = Eπ[IL(x)] and HB\L = Eπ[IB\L(x)] are the
visit histogramsof bins L and B \ L respectively; in our
notation ID(x) is the indicator variable with value1 when
x falls in D, zero otherwise. Equations (14) and (15) can be
used to approximate numerator and denominator of (13):

neffti
≈ N

(
M HL + δ HB\L

)2

M2 HL + δ2 HB\L
(16)

≈ N

(
HB\L + 2

M

δ
HL +

M2 H2
L

δ2 HB\L

)
(17)

The approximation given by (17) follows from the assumption
that HL/HB\L << (δ/M)2. When dispersion is large, pro-
posal can be considered almost constant on regionL and its
visit histogramHL decreases proportionally with the ratio of
hypervolumes ofL andB \L: HL ∝ 1/rd

ti,ε in d-dimensional
space. Thus, the last partition sets in the estimation window,
i.e. those approximating better the distribution at the end of the
estimation window, have a spread proposal and are represented
by few effective samples, as shown by the trend of (17). From
difference between effective sample size and KLD reduction,
the bias in estimation follows.

The solution proposed in [7] mitigates the effects of bias by
considering the multimodal structure of samples distribution in
KL-distance gradient estimation. The estimation of gradient
given by (5) ignores samples dispersion in differentbins.
Formally, gradient (5) is the result of underestimation of
KL-divergence: callBelmix(Cj) andBelopt(Cj) the mixture
and optimal histograms for clusterCj respectively; from the
convexity of KLD [2], Jensen inequality holds

KL(
M∑

j=1

Belmix(Cj) ‖
M∑

j=1

Belopt(Cj))

≤
M∑

j=1

KL (Belmix(Cj) ‖ Belopt(Cj)) (18)

Gradient estimation based on the second term of inequality
(18) is better than the previous one based on the first term, but
no optimality can be claimed since bin subdivision is empirical
and gradient descent approaches easily incur in local minima
problems. Furthermore, even if cluster detection is usually
performed in PF to group localization hypotheses and no
additional computational load is required, sample management
is not at all straightforward.
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B. Alternative computation of Mixture Weights

This section proposes an alternative criterion to compute
the values of the weights for the mixture belief. Instead of
trying to reduce the Kullback-Leibler divergence, our approach
considers mixture weights as the assigned measure of relative
importance of partitions that is transformed by processing at
the end of estimation window. RTPF prior distribution is the
result of two main steps: resampling of samples and propa-
gation of trajectories along previous estimation window. The
effect of resampling is the concentration of previous estimation
window samples in a unique distribution carrying information
from each observation. Conversely, the trajectories update
given by odometry and observation spreads the particles on
partition sets.

Our attempt is to build a linear map modeling the change of
relative importance, i.e. mixture weightsα, due to resampling
and propagation of samples. This map should depend on
sample weights. Letwij be the weight of thei − th sample
(or trajectory) of thej − th partition set. Then, theweight
partition matrix is given by

W =

 w11 ... w1k

... ...
wNp1 ... wNpk

 (19)

The weights on a row of this matrix trace the history of a
trajectory on the estimation window; a group of values along a
column depicts a partition handling sensor data in a given time.
Resampling and trajectory propagation steps can be shaped
using matrixW and mixture weightsα.

• Resampling. The effect of resampling is the concentration
of each trajectory in a unique sample whose weight is
the weighted mean of the weights of the trajectory. In
formula, the vector of trajectory weights is given byt =
W · α.

• Propagation. Projecting a sample along a trajectory is
equivalent to the computation of the weight of the sample
(i.e., the posterior) for each set, given the proper sensor
information. Again, matrixW gives an estimation of the
weight. Trajectories projection can thus be done with a
simple matrix product

α̂ = WT · t = WT W · α (20)

Vector α̂ is a measure of the relative amount of impor-
tance of each partition set after resampling and propa-
gation depending on the choice of coefficientα. Hence,
α̂ is the new coefficient vector for the new mixture of
believes.

Some remarks can be made about the matrixV = WT W
in (20). First, since we assumewij > 0, V is a symmetric and
positive semi-definite (SPSD) matrix. Moreover, each element
j on the main diagonal is the inverse of the effective sample
size of setj. The effective sample size is a measure of the
efficiency of importance sampling on each of the partition sets.
Therefore, the off-diagonal elements ofV correspond to a sort
of importance covariances among two partition sets. Thus we
will refer to this matrix asweights matrix.

Hence, a criterion to compute the mixture weights consists
of choosing the vectorα that is left unchanged by map (20)

except for scale. Since (20) depends on square of sample
weights, resulting mixture weights reflects the importance of
each partition set according to the effective sample size. The
vector is thus obtained by searching for an eigenvector of
matrixV . To achieve better stability we choose the eigenvector
corresponding to the largest eigenvalue. The eigenvector can
be computed using the power method or the inverse power
method. This criterion can be interpreted as an effort to balance
the effective number of samples keeping the proportion among
different partition sets.

IV. RESULTS

We report RTPF performance evaluation both in simulated
environments and using experimental data collected by nav-
igating a robot in a known environment. These results have
been obtained exploiting the localization system described in
[10]. Tests have compared the effectiveness of the two solu-
tions previously described for computation of RTPF mixture
weights by assessing their impact on localization performance.

A. Simulation

Several tests were performed in the environments shown
in figures 2 and 3. They correspond to the main ground
floor hallway in the Computer Engineering Department of
the University of Parma (figure 2) and to the hallway of
the Department of Computer Science and Engineering of the
University of Washington (figure 3, map adapted from [7]).
These environments allow verification of RTPF correctness

Fig. 2. Map 1 – Hallway and simulated paths in the Computer Engineering
Department, University of Parma.

Fig. 3. Map 2 – Hallway and simulated paths in the Department of Computer
Science and Engineering, University of Washington.

while coping with several symmetric features, which may
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cause ambiguities in the choice of correct localization hypothe-
ses. The environment of figure 3 had been exploited in [7] to
verify RTPF correctness and has therefore been considered as
a reference.

In simulation, the map is stored as a grid with a given resolu-
tion (0.20 m) and is used both to create simulated observations
and to compute importance weights in correction steps. Data
provided to the localizer consist of a sequence of laser scans
and measurements: scanned ranges are obtained by ray tracing
a beam on the discretized map. The measurement model is also
based on ray tracing according to standard beam models for
laser scanner [11]. In our tests we have used only three laser
beams measuring distances to left, right and frontal obstacles;
such poor sensor data stress the role of algorithm instead
of sensor data. A gaussian additive noise was added to both
range beams and robot movements representing environment
inputs and robot state in simulation. Thus simulation tests are
performed in an environment known in detail and are best
suited for comparing performance between algorithms. The
task of the robot is to achieve localization while moving in
the environments of figures 2 and 3 along assigned trajectories.
Simulated trajectories, labeled as Path 1 and Path 2 in figures
2 and 3, correspond to lengths of approximately 5 to 8m.

Localization algorithms investigated are the original steepest
descent-based one (RTPF-Grad) and the proposed RTPF based
on the effective number of samples (RTPF-Eig). During these
tests the partition set size was 1000 samples.

A summary of simulation results is reported in figures 4
and 5, where curves show the localization error for the two
algorithms at each iteration by considering convergence to the
maximal hypothesis. For both curves, each value is obtained
by averaging the distances of the estimated pose from the real
pose over 10 trials where localization eventually converged
to the correct hypothesis within the maximum number of
iterations (set to 40). For both algorithms there were also
a few instances where localization did not converge to the
correct hypothesis within the length of the path, although the
correct hypothesis was the second best. These unsuccessful
experiments were approximately10% of all simulated local-
ization trials. We did not verify whether the robot would
eventually recover its correct pose in the environment with
further navigation.

On the average, the two versions of the RTPF-based local-
izer converge to some few hypotheses after three iterations,
and the common samples distribution is multi-modal. Hence,
cluster search leads to few hypotheses with different weight.
In our tests a hypothesis close to the correct robot pose
always exists, and when this hypothesis prevails there is a
sudden change in localization error, as shown in figures 4
and 5. Convergence is helped by recognizable features, e.g.
the shape of scans, but when the environment is symmetric
it can be difficult to reach, especially with limited or noisy
sensoriality. Of course, the mean error in figures 4 and 5 does
not correspond to any of the simulated trials; rather, it is the
result of averaging trials with quick convergence and trials
where the convergence requires many more iterations.

Figure 6 provides an alternative view of the same data, as
curves show the percentage of simulation trials converging to
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Fig. 4. Performance of the two RTPF versions in the simulated environment
of Map 1. Thex-axis represents the iterations of the algorithm. They-axis
shows the average error distance of the estimated pose from robot pose.
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Fig. 5. Performance of the two RTPF versions in the simulated environment
of Map 2. Thex-axis represents the iterations of the algorithm. They-axis
shows the average error distance of the estimated pose from robot pose.

the correct hypothesis (i.e. with localization error less than1.5
m) at each iteration. In a few simulations, the correct robot
pose is recovered only after about 20 or 30 iterations, i.e. after
sensing map features that increase the weight of the correct
samples.

Empirically, for the examined environments RTPF-Eig
seems to exhibit a slightly faster convergence, on the average,
to the correct localization hypothesis, even though its average
error at the last recorded iteration appears somewhat larger.

B. Experiments

Real experiments were run in the environment of figure 2
collecting data with a Nomad 200 mobile robot equipped with
a Sick LMS 200 laser scanner. The robot moved along Path
1 for about5 m, from the left end of the hallway in steps of
about15 − 20 cm and reading three laser beams from each
scan in the same way of the simulation tests.

To assess the consistency of the localizer’s output in an
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Fig. 6. Percentage of simulation trials converged to the correct hypothesis,
i.e. with localization error less than 1.5 m, during iterations for Map 1 (a)
and Map 2 (b).

automated way, we compared the robot pose computed by
the localizer (using the RTPF-Eig algorithm) with the one
provided by an independent localization methodology. To this
purpose, some visual landmarks were placed in the envi-
ronment and on the mobile robot, and a vision system was
exploited to triangulate the robot position based on these
landmarks. The vision system provided an independent, coarse
estimate of the robot pose at any step, and hence allowed
to establish convergence of the RTPF-based localizer. The
two localization estimates were computed concurrently at each
location and stored by the robot.
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Fig. 7. Performance of RTPF-Eig using real data collected in the hallway
of Map 1.

Figure 7 shows the results of 10 tests of RTPF-Eig over
about 20 iterations. In these real experiments RTPF-Eig
achieves localization to the correct hypothesis very fast in
most cases. After convergence, the maximum distance between
RTPF-based and vision based estimates is about70 cm, due to
the compound error of the two systems. In real experiments in

Map 1 localization was always successful within the length of
the path. Moreover, results in figure 7 show that localization
to the correct hypothesis was always reached in less than 10
iterations.

V. CONCLUSION

In this paper, we have presented a formal discussion of
computation of mixture weights in RTPFs, along with an
improved approach overcoming potential problems associated
with the existing technique. The method proposed in this
paper computes mixture weights as the eigenvector of a matrix
and thus avoids gradient descent, possibly prone to numerical
instability. The method provides a balance of the effective
sample size of partition sets on an estimation window.

The proposed approach has been implemented in a RTPF
for localization with a mobile robot equipped with a laser
range scanner, and evaluated in both simulation tests and
real experiments. In two simulation environments, the new
approach has achieved a localization performance similar to
the original KLD-based algorithm, while avoiding the potential
problems associated with gradient search methods. In real
experiments with the mobile robot, the modified RTPF-based
localization system has proven very effective, yielding correct
localization within a small number of filter iterations.

In addition to the anecdotal evidence reported in this paper,
further experimental work is required to assess the relative
merit of the improved RTPF over the original approach. We
also plan to investigate application of the modified RTPF to
different estimation problems, beside localization.
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[7] C. Kwok, D. Fox, and M. Meiľa. Real-time particle filters.Proc. of the
IEEE, 92(3):469–484, March 2004.

[8] J.J. Leonard and H.F. Durrant-Whyte. Mobile Robot Localization
by Tracking Geometric Beacons.IEEE Int. Conf. on Robotics and
Automation, 1991.

[9] J. Liu. Metropolized independent sampling with comparisons to re-
jection sampling and importance sampling.Statistics and Computing,
6(2):113–119, June 1996.

[10] D. Lodi Rizzini, F. Monica, M. Reggiani, and S. Caselli. Addressing
complexity issues in a real-time particle filter for robot localization.Intl.
Conf. on Informatics in Control, Automation and Robotics, 2007.

[11] S. Thrun, W. Burgard, and D. Fox.Probabibilistic Robotics. MIT Press,
Cambridge, MA, 2005.


