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Abstract—Monte Carlo methods have been successfully the size of the mixture [3], or of the number of observations,
adopted for robot localization thanks to their flexibility in je. discarding sensor data.
dlstrlbutlon representation. However, these technlques. are cOM-  Tha Real-Time Particle Filter[6, 7] provides a tradeoff
putationally expensive and can hardly perform at the incoming b - . lated d
sensor data rate, when computation resources are limited. The .etween time constraints relate t‘? .senso.r management an
Real-Time Particle Filter (RTPF) is an algorithmic solution filter performance. Samples are partitioned into subsets among
conceived to make execution of a patrticle filter iteration feasible observations over amstimation window The size of each
within time constraints by means of a mixture representation partitioned subset is chosen so that a particle filter iteration
for the set of samples. RTPF requires an optimal balance of .o, e performed before a new observation is acquired. The

the contribution of each set to the mixture, whose computation, diff ith dard PE with I | i .
unfortunately, is quite difficult. In this paper, we provide a formal ~ différence with stanaar with smaller sample set lies in

discussion of mixture representation by considering the weight the representation of the posterior as a mixture of samples: at
mixture. We illustrate a novel solution for computing the mixture the end of an estimation window the distribution consists of

parameters based on the notion of effective sample size. Thisthe samples from each subset of the window. Mixture weights
solution is less prone to numerical instability. Finally, we compare - yetarmine how each partition set contributes to the posterior
the proposed approach with the original RTPF algorithm through . L . -
simulation tests and experiments. and are cpmputeq |n.ord.er to minimize the apprquatlon error

of the mixture distribution. However, the original proposal
for computation of mixture weights, based on minimization
of Kullback-Leibler (KL) divergence [6, 7], is prone to bias
problems and numerical instability arising from the need to

. INTRODUCTION perform a numerical gradient descent.

Global localization is the problem of estimating robot pose, In this paper, we provide two main contributions: a formal
i.e. its position and orientation, with respect to an externahalysis for the evolution of mixture of posterior in RTPF
reference frame. The robot has at its disposal a map of thed a novel solution for the computation of mixture weights.
environment, its motion information and its sensor observi&ach partition set posterior consists of samples, which are
tions. Bayesian filtering is a general probabilistic paradigm trawn from motion model as proposal on the estimation
arrange motion and sensor data in order to achieve a solutiomimdows and whose importance weight depends only on a
the form of distribution of a random variable. While parametrigsingle observation. Since the correction step is performed at
bayesian filters represent state as a continuous function (géfferent time instants for each partition set, differences among
e.g. [8, 1]), inMonte Carlo localization(MCL) [4] the robot partition posteriors introduce a bias in estimation. We show
belief about its current position is given by a set of samplelsat the bias is an outcome of prominence of partition set that
drawn from a proposal distribution and by importance weightainimizes KL-divergence and has poeffective sample size
that measure the discrepancy of each sample from the corsiptultaneously. We then present an improved approach for the
distribution. MCL inherits advantages afequential impor- computation of mixture weights based effective sample size
tance sampling with resamplin¢SIR) techniques: it allows of the partition sets.
flexibility in representation of the posterior, which usually does The paper is organized as follows. After outlining RTPF
not have a given parametric model, and limits linearizatian section Il, a formal description of the bias problem and
errors in motion and sensor model equations, which often leg@& proposed novel approach are illustrated in section IlI.
to poor performance and divergence of filter. Simulations and experiments are reported in section IV and

Unfortunately, particle filter (PF) complexity and perforcompared with the original RTPF. Finally, conclusion remarks
mance both depend on the number of samples: in glokgk given in section V.
localization a high density of samples helps to discover and to
converge towards the correct localization hypothesis. However,
for each additional sample a prediction, a correction and
a resampling step are performed. Furthermore, localizationln particle filters, updating the particles used to represent
performance also depends on sensor information, which cotié probability density function (potentially a large number)
be acquired at a rate higher than the filter update rate. Possildeally requires a time which is a multiple of the cycle
solutions to this mismatch between sensing rate and processifigsensor information arrival. Naive approaches, yet often
time include reduction of the number of samples, e.g. adaptiadopted, include discarding observations arriving during the

Index Terms— Robot Localization, Real-Time Particle Filter,
Mixture of posterior

Il. REAL-TIME PARTICLE FILTERS



update of the sample set, aggregating multiple observatiansd Bel,,,;, (2, |). In [7], the authors propose to minimize
into a single one, and halting the generation of new sampligir Kullback-Leibler distance (KLD). This measure of the
upon a new observation arrival [7]. These approaches ddifference between probability distributions is largely used in
affect filter convergence, as either they loose valuable sengdormation theory [2] and can be expressed as:
information, or they result in inefficient choices in algorithm
parameters. Belmiz (a1, |0)

An advanced approach dealing with such situations is the J(a) = /Belmix(fctk\a) log ﬁdwtk (4)
Real-Time Particle Filters (RTPF) [6, 7], which will be briefly opt (T
described in the following. Considér observations. The key ~To optimize the weights of mixture approximation, a gra-
idea of the Real-Time Particle Filter is to distribute the samplééent descent method is proposed in [7]. Since gradient com-
in sets, each one associated with one ofitlobservations. The putation is not possible without knowing the optimal belief,
distribution representing the system state within an estimatigfiich requires the integration of all observations, the gradient
window will be defined as anixture of the & sample sets as is obtained by Monte Carlo approximation: believed,; share

shown in Figure 1. At the end of each estimation windovhe same trajectories over the estimation windows, so we can
use the weights to evaluate bdBe/; (each weight corresponds

z(t,1)  z(t,2) z(t,k) z(t+1,1) 2(t+1,2)  z(t+1,k) to an observation) andel,,; (the weight of a trajectory is

. : the product of the weights associated to this trajectory in
each partition). Hence, the gradient is given by the following
formula:

aJ SF | ;i Bel,
~ 1+ Bel;log ==L 2%
Ooy; +Detilog Belopt

whereBel; is substituted by the sum of the weights of partition

Fig. 1. RTPF operation: samples are distributed in sets, associated with %eet i —th and Belopt by the sum of the weights of each

observations. The distribution is a mixture of the sample sets based on weidh@€ctory.
a; (labeleda; in figure). Unfortunately, (5) suffers from &ias problem which [7]

solve by clustering samples and computing separately the
the weights of the mixture belief are determined by RTPgontribution of each cluster to the gradient (5). In the next
based on the associated observations in order to minimize §&tion, an alternative solution is proposed.
approximation error relative to the optimal filter process. The
optimal belief could be obtained with enough computational . AN ENHANCED RTPE

resources by computing the whole set of samples for each _ . _ . o
observation. Formally: In this section we provide a formal investigation on the

motivation of bias in RTPF estimation in [7], and we propose
b a new solution for mixture weights computation.
Belopt(xt,,) o< [ ... H p(zt,
i=1
-Bel(xy,)dxy, - dxy,_, (1) A. Bias in RTPF Mixture

where Bel(z:, ) is the belief generated in the previous estima- In RTPF, samples belonging to different partition sets

tion window, ands,,, u,, z,, are, respectively, the observation@€ drawn from the same proposal, but their importance
the control information. and the state for the ¢ interval.  Weights depend on different observation likelihood functions

Within the RTPF framework, theelief for the i — th set P(#/2t), which are computed in different time instartis
can be expressed, similarly, as: Hence, the first source of disparity among partition sets is

the degree of proposal dispersion during the correction step.

®)

Lt 1) utz‘—l)

xti) : p(mti

Bely(zy,) //p(zt ) - A sgitable measure of proposal dispersion at iteravipris

provided by the radius of the ball sﬂ(n%,r) C R4, which
k is centered on expected valyg, and includes a consistent
[ pGe, |2,y ue, ) - Bel(ay,)day, . . day, _, (2) portion of the distribution of:;, . The probability that a sample
j=1 falls in B(n., ,r) can be bound by and the trace of the

containing only observation-free trajectories, since the orfipvariance matrixs’,, , since the following Chebychev-like
feedback is based on the observatign sensor data available inequality holds:

at timet;. The weighted sum of the believes belonging to an tr(Xa,)
estimation window results in an approximation of the optimal P (zt, € B(a, ,7)) >1— T (6)
belief:
k In the following, the probability of event given b (7., ,r)
Bel iz (24, |or) o ZaiBeli(xtk) (3) will refer to a proposal density function arrestedtjn
=1

An open problem is how to define the optimal mixture m(xy,) :/ ||p(mt,- Ty, U, ) dvg, .. .dre,_,  (7)
RdX1
=1

weights minimizing the difference between tii&el,,;(xy, )



Then, given0 < ¢ < 1, a sample falls in a ball with at The above expression is achieved by substituting normalized
least probabilitye when its radius is larger than tliispersion weightsa, (x) with their expression. Maximizing the effective
radius sample size is equivalent to minimizing the variance of the
Ttie =2/ t7(Ea,,)/(1 —€) (8) weights: it is easy to show with Jensen inequality that; is
bounded by the number of sampl®&s which is obtained when
Parameterr, . provides a rough estimation for dispereach weight is equal td and the variance is small. Bounds

sion because only for unimodal PDF the bail7., ,7.,.c) on observation likelihood allow an approximation of expected
(briefly B hereafter) limits a region around a local maximumyg|yes of weight and square weight:

Furthermore, it is often the case that, is a vector of

heterogeneous random variables (e.g. cartesian coordinates and  g_[w, (x;,)|z:, € B]
angular values), whose variances are mixed in the trace, with E [wg (2,) |20, € B]
the result that bound (8) largely overestimates the region. LT AT T
However, the dispersion radius is a synthetic value and Can\pﬁere Hy = E[I5(z)] and Hpy = Ex[I ()] are the
adapted to multimodal distributions after decomposition into\ﬁsit histogram;of bins L and g \ L rgspe\ctively' in our
sum of unimodal hypotheses. Empirically, this decompositiorﬂjtation Ip(z) is the indicator variable with valué when

s achieved_ by clustering on samples. . ...« falls in D, zero otherwise. Equations (14) and (15) can be
By applying command control and updating robot position

i ) o i used to approximate numerator and denominator of (13):

the dispersion radius increases together with the trace of

covariance matrix. IfG;, is the Jacobian of motion model 2
. i M H 6 H

computed in(n., ,u,), with G, GI' > 0 andtr(G,, G,) > Nepf, ™~ ( p+9 Hpy)

1 (hypotheses verified by a standard model like [11]), and '

Yu,, is the covariance matrix of additive noise, then

M Hp+§ Hp\1, (14)

<
< M? Hp+6 Hp (15)

1
M? Hp, + 62 Hp\ (16)

Q

M M? H?
N <HB\L +2 FHL + (SQHL) (17)
tr(Sa,,,,) ~ tr(Gy, 4, GL) + tr(Su,,) ) B\L

Thus, we conclude th&fr(Emti) < t?‘(Eth) and that the The approximation given by (17) follows from the assumption

) . o -
dispersion radius increases over the estimation window. at Hy /Hp\p, << (6/M)”. When dispersion is large, pro

. . - . posal can be considered almost constant on regiand its
more accurate estimation of how it increases could be obta|r1331giS g

with further hypotheses on the motion model, e.g. Lipschihz t histogram# decrease's proporuodnallly W'th the ratlo of
continity ypervolumes of. and B\ L: Hy, o< 1/rf, . in d-dimensional

sooace. Thus, the last partition sets in the estimation window,

Since the proposal is more and more spread in the estlmatf 2! those approximating better the distribution at the end of the

window and correction is performed at different times for eac Ltimation window, have a spread proposal and are represented

partition, we want to investigate how the dispersion affecfs .
importance weights. Observation likelihoad, (z) — p(z. |z) y few effective samples, as shown by the trend of (17). From

is usually more concentrated than the proposal someti difference between effective sample size and KLD reduction,
ked y h N 151 W that brop ’@ 6 MAR bias in estimation follows.
F:;oi as shown in [S]. We assume that, given a propen, Thg sqlution propqsed in [7] mitigates the effect.s qf bigs py
L={reB|w(@)>d (10) considering the multimodal structure of samples distribution in
: KL-distance gradient estimation. The estimation of gradient
covers a consistent portion af;, (). Thus, observation like- given by (5) ignores samples dispersion in differdmis
lihood is bound inL by M = sup,; wy,(z) < oo (envelope Formally, gradient (5) is the result of underestimation of
condition) and inB \ L by §. Hence,w,, (z) < A(x) over B, KL-divergence: callBel,;;(C;) and Bely,:(C;) the mixture

with and optimal histograms for clusté¥; respectively; from the
AMz) = M zel (11) convexity of KLD [2], Jensen inequality holds
6 else
The _boundmg fu_nct|or)>\(;v_) and '_setL are defl_ned on bz_ilB, KL(Z Belnmia(C5) | ZBelopt(Cj))
and in the following we will restrict the sampling domaino = =
using w(zy, |z, € B) as proposal. This assumption allows us M
to consider the dispersion radius in the following discussion. < ZKL (Belpmis(C;) || Belopt(Cy)) (18)
Moreover, this approximation is not so rough wheis close B =
to 1.

The effective sample siZ8] is a measure of the efficiency Gradient estimation based on the second term of inequality
of a set of samples in the representation of a target posterigi8) is better than the previous one based on the first term, but

1 no optimality can be claimed since bin subdivision is empirical
Neff, N () (12) and gradient descent approaches easily incur in local minima
PONERTACINY! problems. Furthermore, even if cluster detection is usually
N (s)y) 2 performed in PF to group localization hypotheses and no
Zs:l wtm (xti ) oyt . . .
_ (13) additional computational load is required, sample management

sV L w3 (x(‘f)) is not at all straightforward.



B. Alternative computation of Mixture Weights except for scale. Since (20) depends on square of sample

This section proposes an alternative criterion to Compu\f@ights, resulting mixture weights reflects the importance of
the values of the weights for the mixture belief. Instead &@ch partition set according to the effective sample size. The
trying to reduce the Kullback-Leibler divergence, our approad§ctor is thus obtained by searching for an eigenvector of
considers mixture weights as the assigned measure of relafRatrix V. To achieve better stability we choose the eigenvector
importance of partitions that is transformed by processing &fresponding to the largest eigenvalue. The eigenvector can
the end of estimation window. RTPF prior distribution is th@€ computed using the power method or the inverse power
result of two main Steps: resamp“ng of Samp|es and proﬁa.ethOd. ThIS criterion can be interpret_ed as an effort.to balance
gation of trajectories along previous estimation window. THE€ effective number of samples keeping the proportion among
effect of resampling is the concentration of previous estimatiéfferent partition sets.
window samples in a unique distribution carrying information
from each observation. Conversely, the trajectories update IV. RESULTS

given by odometry and observation spreads the particles Me report RTPF performance evaluation both in simulated

parotﬁl:)gttsé?]&t is to build a linear man modeling the chan eg vironments and using experimental data collected by nav-
b P 9 9 J;ting a robot in a known environment. These results have

L . . : el
relative |mport§\nce, .. mixture wglghhs due to resampling been obtained exploiting the localization system described in
and propagation of samples. This map should depend

sample weights. Lets;, be the weight of the — th sample r6)]. Tests have compared the effectiveness of the two solu-

; X I . tions previously described for computation of RTPF mixture
(or 'Fr_ajectory)_ qf the] — th partition set. Then, theveight weights by assessing their impact on localization performance.
partition matrix is given by

w11 W1k . .
(19) A. Simulation

WN,1 - WNk Several tests were performed in the environments shown
figures 2 and 3. They correspond to the main ground
or hallway in the Computer Engineering Department of
e University of Parma (figure 2) and to the hallway of
e, Department of Computer Science and Engineering of the
niversity of Washington (figure 3, map adapted from [7]).
These environments allow verification of RTPF correctness

W =

The weights on a row of this matrix trace the history of
trajectory on the estimation window; a group of values along
column depicts a partition handling sensor data in a given tinf
Resampling and trajectory propagation steps can be sha
using matrixW and mixture weightsy.

« ResamplingThe effect of resampling is the concentration
of each trajectory in a unique sample whose weight is
the weighted mean of the weights of the trajectory. In
formula, the vector of trajectory weights is given by
W - a.

« Propagation Projecting a sample along a trajectory is
equivalent to the computation of the weight of the sample
(i.e., the posterior) for each set, given the proper sendoy- 2. Map 1 — Hallway and simulated paths in the Computer Engineering
information. Again, matrixiV’ gives an estimation of the DePartment. University of Parma.
weight. Trajectories projection can thus be done with a
simple matrix product

a=wWr.t=wTw.a (20)

Vector & is a measure of the relative amount of impor-
tance of each partition set after resampling and propa-
gation depending on the choice of coefficientHence,
& is the new coefficient vector for the new mixture of
believes.
Some remarks can be made about the matrix W1 W
in (20). First, since we assums; > 0, V is a symmetric and
positive semi-definite (SPSD) matrix. Moreover, each element
j on the main diagonal is the inverse of the effective sample
size of setj. The effective sample size is a measure of the
efficiency of importance sampling on each of the partition sets.
Therefore, the off-diagonal elementsiéfcorrespond to a sort
of importance covariances among two partition sets. Thus wig. 3. Map 2 — Hallway and simulated paths in the Department of Computer
will refer to this matrix asweights matrix Science and Engineering, University of Washington.
Hence, a criterion to compute the mixture weights consists
of choosing the vectow that is left unchanged by map (20)while coping with several symmetric features, which may




cause ambiguities in the choice of correct localization hypothe-
ses. The environment of figure 3 had been exploited in [7]to .| | ‘
verify RTPF correctness and has therefore been considered as 7

a reference. g

In simulation, the map is stored as a grid with a given resolu-

tion (0.20 m) and is used both to create simulated observations _° |
and to compute importance weights in correction steps. Data§4,
provided to the localizer consist of a sequence of laser scanss |
and measurements: scanned ranges are obtained by ray tracing?/
a beam on the discretized map. The measurement model is also
based on ray tracing according to standard beam models for ’
laser scanner [11]. In our tests we have used only three laser .|
beams measuring distances to left, right and frontal obstacles;

xxx
e

such poor sensor data stress the role of algorithm instead o 5 10 o 2 - 20
of sensor data. A gaussian additive noise was added to both Num. lteration

range beams and robot movements representing environn]g&t‘,h
inputs and robot state in simulation. Thus simulation tests ajievap 1. Thex-axis represents the iterations of the algorithm. Frexis
performed in an environment known in detail and are besitows the average error distance of the estimated pose from robot pose.

A i v

Performance of the two RTPF versions in the simulated environment

suited for comparing performance between algorithms. The
task of the robot is to achieve localization while moving in }
the environments of figures 2 and 3 along assigned trajectories. or_
Simulated trajectories, labeled as Path 1 and Path 2 in figures |
2 and 3, correspond to lengths of approximately 5 t@.8

Localization algorithms investigated are the original steepest |
descent-based one (RTPF-Grad) and the proposed RTPF based |
on the effective number of samples (RTPF-Eig). During these =
tests the partition set size was 1000 samples.

A summary of simulation results is reported in figures 4 4
and 5, where curves show the localization error for the two
algorithms at each iteration by considering convergence to the
maximal hypothesis. For both curves, each value is obtained ?f
by averaging the distances of the estimated pose from the real .|
pose over 10 trials where localization eventually converged
to the correct hypothesis within the maximum number of s 10 B2 ® % 3 4
iterations (set to 40). For both algorithms there were also
a few instances where localization did not converge to th@.5. Performance of the two RTPF versions in the simulated environment
correct hypothesis within the length of the path, although tl’?ﬁ Map 2. Thex-axis represents the iterations of the algorithm. Treis

. S s the average error distance of the estimated pose from robot pose.

correct hypothesis was the second best. These unsuccesstul
experiments were approximately)% of all simulated local-

ization trials. We did not verify whether the robot woulgne correct hypothesis (i.e. with localization error less than
eventually recover its correct pose in the environment Wi}y ot each iteration. In a few simulations, the correct robot

further navigation. pose is recovered only after about 20 or 30 iterations, i.e. after

~ On the average, the two versions of the RTPF-based locglnsing map features that increase the weight of the correct
izer converge to some few hypotheses after three |terat|oggmp|es_

and the common samples distribution is multi-modal. Hence'EmpiricaIIy for the examined environments RTPF-Eig
cluster search leads to few hypotheses with different weigRbems to exhibit a slightly faster convergence, on the average,
In our tests a hypothesis close to the correct robot pogeie correct localization hypothesis, even though its average

always exists, and when this hypothesis prevails there iSsfor at the last recorded iteration appears somewhat larger.
sudden change in localization error, as shown in figures 4

and 5. Convergence is helped by recognizable features, e.g. )

the shape of scans, but when the environment is symmetfic Experiments

it can be difficult to reach, especially with limited or noisy Real experiments were run in the environment of figure 2

sensoriality. Of course, the mean error in figures 4 and 5 daaslecting data with a Nomad 200 mobile robot equipped with

not correspond to any of the simulated trials; rather, it is thee Sick LMS 200 laser scanner. The robot moved along Path

result of averaging trials with quick convergence and trialk for about5 m, from the left end of the hallway in steps of

where the convergence requires many more iterations. about15 — 20 ¢m and reading three laser beams from each
Figure 6 provides an alternative view of the same data, asan in the same way of the simulation tests.

curves show the percentage of simulation trials converging toTo assess the consistency of the localizer’'s output in an

01

-7 RTPF-Grad
—< RTPF-Eig

Error




(A) Convergence in Map 1

Map 1 localization was always successful within the length of
the path. Moreover, results in figure 7 show that localization
to the correct hypothesis was always reached in less than 10
iterations.

V. CONCLUSION

In this paper, we have presented a formal discussion of
computation of mixture weights in RTPFs, along with an
improved approach overcoming potential problems associated
with the existing technique. The method proposed in this
paper computes mixture weights as the eigenvector of a matrix
and thus avoids gradient descent, possibly prone to numerical
instability. The method provides a balance of the effective
sample size of partition sets on an estimation window.

The proposed approach has been implemented in a RTPF
for localization with a mobile robot equipped with a laser
Fig. 6. Percentage of simulation trials converged to the correct hypothegi‘:%l,nge scanner, and evaluated in both simulation tests and
i.e. with localization error less than 1.5 m, during iterations for Map 1 (d)eal experiments. In two simulation environments, the new
and Map 2 (b). approach has achieved a localization performance similar to
the original KLD-based algorithm, while avoiding the potential

problems associated with gradient search methods. In real

automated way, we compared the robot pose computed deriments with the mobile robot, the modified RTPF-based
the localizer (using the RTPF-Eig algorithm) with the ongcalization system has proven very effective, yielding correct
provided by an independent localization methodology. To thigcajization within a small number of filter iterations.

purpose, some visual landmarks were placed in the envi-p aqdition to the anecdotal evidence reported in this paper,
ronment and on the mobile robot, and a vision system Whgther experimental work is required to assess the relative
exploited to triangulate the robot position based on theggurit of the improved RTPF over the original approach. We
landmarks. The vision system provided an independent, Coags€s plan to investigate application of the modified RTPF to

estimate of the robot pose at any step, and hence allowgfferent estimation problems, beside localization.
to establish convergence of the RTPF-based localizer. The

two localization estimates were computed concurrently at each
location and stored by the robot.

- RTPF-Grad
— RTPF-Eig

I I I )
25 30 35 40

% Test with error less than 1.5 m
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(B) Convergence in Map 2
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