
1

Improving reinforcement learning through a better
exploration strategy and an adjustable representation

of the environment
R. Iglesias∗ M. Rodrı́guez∗ M. Sánchez∗ E. Pereira∗ C.V. Regueiro†

∗ Electronics and Computer Science, University of Santiago de Compostela, Spain.
†Electronic and Systems, University of Coruña, Spain

Abstract— Reinforcement learning is a promising strategy as
all the robot needs to start a random search of the desired solution
is a reinforcement function which specifies the main restrictions
of the behaviour. Nevertheless, the robot wastes too much time
trying the execution of random –mostly wrong– actions, and the
user is forced to determine the balance between the exploration
of new actions and the execution of already tried ones. In this
context we propose a methodology which is able to achieve
fast convergences towards good robot-control policies, and it
determines on its own the required degree of exploration at every
instant. The performance of our approach is due to the mutual
and dynamic influence that three different elements exert on each
other: reinforcement learning, genetic algorithms, and a dynamic
representation of the environment around the robot.

In this paper we describe the application of our approach to
solve two common tasks in mobile robotics (wall following and
door traversal). The experimental results show how the required
learning time is significantly reduced and the stability of the
process is increased. On the other hand, the low user-intervention
required to solve both tasks –only the reinforcement function is
changed–, confirms the contribution of this approach towards
robot techniques that are fast, user friendly, and demand little
application-specific knowledge by the user, something more and
more required nowadays.

Index Terms— Reinforcement learning, robot control, au-
tonomous agents, genetic algorithms.

I. INTRODUCTION

Reinforcement learning is a very interesting strategy, since
all the robot needs for learning a behaviour is a reinforce-
ment function which tells the robot how good or bad it has
performed, but nothing about the set of actions it should
have carried out. Through a stochastical exploration of the
environment, the robot must find a control policy which
maximizes the expected total reinforcement it will receive;
Eq. 1:

E[
∞∑

t=0

γtrt] (1)

where rt is the reinforcement received at time t, and γ ∈
[0, 1] is a discount factor which adjusts the relative significance
of long-term rewards versus short-term ones. Q-learning [9] is
one of the most popular RL algorithms, through which the
robot will learn a utility function of states and actions, termed
Q-function. This function estimates the expected discounted
reward for every state-action pair; i.e. Q(s,a) is the expected

sum of future rewards obtained by taking action a in state s
and following an optimal policy thereafter.

Q(s, a) = E[r(s, a) +
∞∑

t=1

γtrt|s0 = s, a0 = a]

r(s,a) is the reinforcement the robot receives when it executes
action a in state s, and E[

∑∞
t=1 γtrt|s0 = s, a0 = a]

represents the expected total reinforcement the robot will
receive starting from state s, by executing action a, and then
following the best possible policy.

Once these Q-values have been learnt, the optimal action
for any state is the one with the highest Q-value; this is called
greedy policy:

π∗(s) = arg maxa{Q(s, a)} (2)

Q-learning is currently one of the strongest and most
widely used reinforcement learning algorithms. Basically the
robot begins with an initial set or random negative Q-values:
Q(s, a) ≤ 0, ∀s, a, and then it moves around interacting with
the environment. At each time step the robot observes the
current state of the environment, st, and selects an action
at. After the execution of at in st, the robot receives a
reinforcement value and it changes into state st+1. Starting
from this information the system updates the estimation of
how good or bad the execution of at in st seems to be:

∆Q(st, at) = β(rt + γmaxaQ(st+1, a)−Q(st, a)), (3)

where β ∈ [0, 1] is a learning rate.
Equation 3 describes the simplest version of Q-learning,

as it only updates Q-values based on the transition between
two consecutive states. When rewards occur infrequently, it
can take many learning trials for these values to propagate
to previous states. Due to this, what is termed TD-learning
[7] attempts to expedite this process by simply adding more
memory into the system. There are two well known options:
eligibility traces [1], and truncated temporal differences –
TTD(λ, m) – [4, 3]. In the case of the TTD(λ, m), to
understand the way it works we need only to consider the
example shown in Figure 1. According to this figure the last
three states the robot visited are st−3, st−2, and st−1. In
those states the robot performed actions at−3, at−2 and at−1,
and received rt−3, rt−2 and rt−1 reinforcements. The robot’s
current state is st. If we wish to estimate the discounted



2

reinforcement the robot will receive after the execution of
action at−1 in st−1 there is only one way that this can be
done (Eq. 4):

Zt−1 = rt−1 + γQmaxa(st, a) (4)

Nevertheless, when the state st−2 is considered, there are
two ways of proceeding:

source1 := rt−2 + γQmaxa(st−1, a) (5)

source2 := rt−2 + γrt−1 + γ2Qmaxa(st, a) = rt−2 + γZt−1

(6)
Due to this, both sources are averaged to estimate the

discounted reinforcement the robot will receive after execution
action at−2 in st−2:

Zt−2 = rt−2 + γ[λZt−1 + (1− λ)Qmaxa(st−1, a)].

where λ ∈ [0, 1].
The same assumptions hold for st−3, Figure 1.

Fig. 1. Short Markov chain showing the last three states the robot went
through. The expected future reinforcement the robot will receive is estimated
for every state.

In general, through the TTD(λ, m) algorithm, the robot
keeps track of the last m-executed actions (m = 3 in the
example shown in Figure 1), so that the Q-value corresponding
to the pair st−m, at−m is updated according to the estimated
discounted reward Zt−m:

∆Q(st−m, at−m) = β(Zt−m −Qt(st−m, at−m)),

where Zt−m is obtained recursively as described before:

Zt−k = rt−k + γ[λZt−k+1 + (1− λ)Qmaxa(st−k+1, a)],
∀k = 1, ...,m

Despite the benefits of the RL paradigm in autonomous
robot-learning, there are important problems to consider when
it is applied. First, the time required to learn a good greedy
policy (Eq. 2) increases exponentially with the number of
states and the number of actions that are possible to execute in
each state. On the other hand, the robot wastes an enormous
amount of time trying actions that are clearly inappropriate for
the task but which are selected randomly during the learning
process.

II. OUR APPROACH

To solve some of the aforementioned drawbacks, we pro-
pose a learning strategy which combines three elements:
reinforcement learning (RL), a genetic algorithm (GA), and
an adjustable number of states representing the environment
around the robot. Basically, when our approach is applied the

Fig. 2. Flow diagram which describes the combination of RL and GA.

robot goes through three cyclical and clearly differentiated
stages (Figure 2): a) looking for a new starting position
or convergence. b) exploration, and c) generation of a new
population of solutions (chromosomes) for the next exploration
stage.

During the first stage the robot uses the greedy policy to
move according to what has been learnt so far. When the robot
finds a new situation where it does not know how to move –
local problem – (Figure 3.a), it applies a genetic algorithm to
find a local solution (Figure 3.b). Once the solution has been
achieved a new population of chromosomes is generated and
the robot moves again using the greedy policy until a new
local problem is detected (Figure 3.c).

According to this, our proposal looks very simple and it
seems to be just the sequential combination of two different
learning paradigms (RL and GA). Nevertheless this assump-
tion would be erroneous, as it is the mutual influence between
the three elements aforementioned (RL, GA, and adjustable
number of states), what really improves the learning procedure.
In fact, this mutual influence varies throughout the learning
process: the influence of the GA is very high at the beginning
but it decreases over time. The influence of the RL is higher
and higher as the number of robot-environment interactions
increases and, finally, the dynamic number of states helps the
robot to learn first how to behave in those situations that are
most frequent, while the less frequent ones are learnt in a
second stage.

A. Looking for a new starting position

During this first stage the greedy policy – which represents
what the robot has learnt so far– is applied to control the robot.
If the robot encounters a situation where it does not know how



3

Fig. 3. Schematic representation of our approach. Initially the robot moves using the greedy control policy until it finds a situation it doesn’t know how to
solve (a), a genetic algorithm is applied to find a solution (b), once the problem is solved the greedy policy is applied again (c).

to move – local problem, (Figure 3.a) –, it receives a sequence
of consecutive negative reinforcements, and its position several
steps before the failure is established as a new starting position
for the next exploration stage.

B. Exploration stage

Our strategy applies a GA in order to solve each local
problem the robot finds. The GA starts with a population of
solutions called chromosomes. Each chromosome (represented
as π) determines the action the robot has to carry out at each
state, s: π(s). The population of chromosomes is evaluated
according to an objective function called fitness function,
which reflects for how long a chromosome is able to properly
control the movement of the robot (Figure 3.b). Once a
population of chromosomes has been evaluated, the sequence
of states, actions, and rewards the robot received under the
control of the best chromosome, is replicated off-line several
times to speed up the convergence of the Q-values.

C. Generation of a new population of solutions (chromo-
somes)

The population of chromosomes has to be evolved according
to the fitness values. In order to do this, certain genetic oper-
ators like mutation –which carries out random changes in the
chromosomes–, or chromosome crossover –which combines
chromosomes to raise new solutions– have to be applied. We
use the Q-values to bias the genetic operators and thus reduce
the number of chromosomes which are required to find a
solution. Given a particular chromosome π, the probability that
mutation changes the action that this chromosome suggests for
a particular state s: π(s), depends on how many actions appear
better or worse than π(s) according to the Q-values:

Pmutation(π(s)) =
N1

N −N1

where N is the number of actions and N1 represents the
number of actions that appear better than π(s):

N1 = cardinality{aj ∈ A | Q(s, aj) ≥ Q(s, π(s))}

Finally, if the action that chromosome π suggests for state
s is to be changed, we use another probability which also
considers the Q-values in order to determine a new action to
replace π(s):

Ps(s, ai) =
eQ(s,π(s))/Q(s,ai)∑
j eQ(s,π(s))/Q(s,aj)

. (7)

One of the chromosomes should always be the greedy policy
as it brings together all that has been already learnt by the
robot, and it represents the best chance of obtaining a fast
convergence towards the desired solution.

Finally, when the robot is looking for a new starting position
and the greedy policy is being used to control it, if the robot
moves properly during M steps before it receives negative
reinforcements, only the states involved in the robot’s last
K movements are susceptible of being changed through the
GA, while the states involved in the initial M-K actions are
labelled as learnt, so that neither chromosome selection nor
chromosome crossover can alter them.

The population of chromosomes is resized after its evalua-
tion according to how close the GA is to the desired solution.

D. Adjustable number of states

The number of states used to represent the environment
around the robot influences the time required to learn a sat-
isfactory greedy policy. For this reason we use the properties
of the regular Markov chains [2] to dynamically adjust the
number of states involved in the learning process.

As the robot is able to translate the different situations it
may detect through its sensors into a finite number of states,
S = {s1, .., sN}, there is a N × N transition matrix, P, so
that if the robot is in state si at time step t-1, there is a fixed
probability, Pij , of it going into state sj :

Pij = Prob{st = j|st−1 = i}

Therefore, if we have some information about the state
where the robot is at time instant t, we can try to predict
where the robot will be at t + 1, Eq. 8:

−−→χt+1 = (χt+1(s0), χt+1(s1), ..., χt+1(sN )) = −→χtP (8)

χt+1(si) represents the probability that in the time instant
t+1 the robot is in state si, ∀i = 1, ..., N . −→χt represents the
probability distribution corresponding to the time instant t.

If P is the transition matrix for a Markov system, and
−−→χt+k is a distribution vector with the property that −−−−→χt+k+1 =



4

−−→χt+1P k = −−−→χt+k, then we refer to −−−→χt+k as a steady vector.
This means that the probability of finding the robot in state i
is the same all the time: although the robot is jumping from
state to state, the probability distribution looks the same. As
the steady vector −−−→χt+k does not depend on t, we will dispense
with the subscript and denote it merely as −→χ . When the
transition matrix P satisfies certain conditions (some power
of P has no zero entries), it is proved that −→χ exists and it is
unique.

In our case, during the learning process the transition
matrix is estimated so that −→χ can be calculated. Once this is
done, and since −→χ defines how the robot sees the environment
in the long-term, only those states sj for which the long term
probability is not null (χ(sj) 6= 0), are considered in the
learning procedure.

To finish section II, we will mention some of the differences
between our approach and a Learning Classifier System,
specifically the XCS. While XCS is a rule-based learning
strategy which relies on the combination of GA and RL to
build the rule set that it manipulates, our proposal doesn’t use
the combination GA-RL to build a dynamic representation
of the environment but to get a fast reduction of the degree
of randomness in the actions that are executed. Finally,
the combination of GA and RL is done through the fitness
function in the XCS strategy, while our proposal locates the
combination on the genetic operators – the way mutation,
selection and crossover work depend on the Q-values learnt
through the RL algorithm–.

III. EXPERIMENTAL RESULTS

We applied our approach to solve two common tasks: “wall
following” and “door traversal”. We used a Nomad200 robot
equipped with 16 ultrasound sensors encircling its upper part
and bumpers. In all the experiments the linear velocity of the
robot was kept constant (15.24 cm/s), and the robot received
the commands it had to execute every 300ms.

We used a set of two-layered Kohonen networks to translate
the large number of different situations that the ultrasound
sensors located on the front and right side of the robot may
detect, into a finite set of 220 neurones – states – [6].

The robot was taught how to perform each task in a
simulated training environment, but its performance was tested
in a different one. Convergence was detected when the greedy
policy was able to properly control the movement of the robot
for an interval of 10 minutes.

Through these experimental results we want to put emphasis
on the following aspects: a) the performance of our approach
is higher than the classical RL algorithms, not only under
normal working conditions but also when the parameters of
the classical RL algorithm (β,γ,m,λ) are optimized (section
A). b) The learning process we get through our proposal is
stable (section B). c) The results we got are valid even when
the task to be learnt is changed (section C).

A. Wall following
To teach the robot how to follow a wall located on its right

at a certain distance interval, we used a reinforcement signal

Fig. 4. Distribution of the learning times obtained after running 24
experiments using TTD(λ, m) with a set of parameters manually selected
(a), 20 experiments using TTD(λ, m) with an optimal combination of the
parameters β, γ, λ, and m (b), 25 experiments using our approach with
the same manual selection of parameters as before (c), and 22 experiments
running our approach with the optimal combination of parameters as before
(d).

that is negative whenever the robot goes too far from or too
close to the wall being followed.

Fig. 5. Real robot’s trajectory along a corridor when a control policy learnt
through our approach was used. For a clear view of the trajectory, figure a)
shows the robot’s movement in one direction and b) shows the movement
along the opposite direction. Points 1 and 2 in both graphs correspond to the
same robot position. The small dots represent the ultrasound readings.

We first decided to apply the TTD(λ, m) when the pa-
rameters β, λ, m and γ (see section I), were selected fol-
lowing two different strategies: (a) manual selection, and (b)
automatic search for the optimal combination. In the former
the values of the parameters were selected as the optimal
ones after trying with a small set of different combinations:
β = {0.25, 0.35, 0.45, 0.55}, λ = {0.4, 0.5, 0.60.7, 0.8}, and
m = {10, 20, 30, 40, 50}, the selected combination was β =
0.35, λ = 0.8, γ = 0.95 and m = 30.

Secondly, we applied a GA to search for a combination
of parameters through which the learning time is optimized.
Thus, after running the GA for a minimum period of 30 hours



5

TABLE I
AVERAGE LEARNING TIME AND STANDARD DEVIATIONS (σ) OBTAINED

WHEN THE PARAMETERS λ, β , γ AND m WERE OPTIMIZED THROUGH A

GA, AND WHEN THEY WERE MANUALLY SELECTED.

Strategy average learning time σ
(minutes) (minutes)

TTD(λ, m) 64.42 49.82
manual selection of β, γ, λ, m 24 experiments
TTD(λ, m) 41.27 22.5
optimal combination of β, γ, λ, m 20 experiments
Our approach 28.80 16.62
manual selection of β, γ, λ, m 25 experiments
Our approach 30.83 12.64
optimal combination of β, γ, λ, m 22 experiments

on a Pentium M 1.60Ghz, the best combination we found was:
β = 0.288282, λ = 0.869965, γ = 0.796462 and m = 53. To
avoid falling into the habitual “ conspiracy of goodwill” trap
[5], different persons carried out each one of the parameter
selection strategies.

The experimental results shown in Table I and Figures 4.a
and 4.b reflect the advantages of the optimal combination
of the parameters in comparison with the manually selected
ones. Through the results we can see how the learning time
and the standard deviation are significantly reduced when
the TTD(λ, m) algorithm is executed with the parameters
determined through the GA.

When we applied our approach, the average learning time
and the standard deviation were much lower than with the
TTD(λ, m) algorithm (Table I, Figures 4.c and 4.d). Accord-
ing to the results, the sensitivity with respect to the parameters
λ, β, γ and m is almost inexistent, as the average learning
times are roughly the same: 28.80 minutes (manual selection
of parameters) and 30.83 minutes (optimal combination of
parameters)– the 2 minutes difference represents nothing if
we consider the standard deviations. This result is interesting,
since it means that a reasonable selection of the parameters
is sufficient to obtain a fast robot-learning of the desired be-
haviour. In all the experiments with our approach the number
of chromosomes varied dynamically within the interval [3, 20].

Fig. 6. Real robot’s trajectory when the same control policy as in figure 5
was used.

To prove that the behaviours learnt through our approach
are useful, Figures 5 and 6 show the movement of the robot

Fig. 7. Number of negative reinforcements the robot receives every 4.7
minutes during the learning stage. One of the curves represents one of our
experiments using the TTD(λ, m) algorithm, while the other two represent
two experiments we carried out using our approach. All the experiments were
randomly selected between those we carried out.

in two real and noisy environments.

B. Stability of the learning procedure

We analysed the stability in two different ways: first of all,
what we mean by stability is that the degree of randomness
during the learning process is lower than with other classical
RL algorithms. Figure 7 shows how through our proposal the
number of wrong actions the robot tries during the learning
process – reflected by the number of negative reinforcements
it receives– decreased rapidly over time.

On the other hand, by stability we also mean Liapunov
stability; i.e. small changes in the initial conditions should not
give rise to very different final systems. Although the analysis
of the Liapunov stability is still part of the ongoing research at
the University of Santiago, work to date has consisted of the
comparison of the steady vectors (Section II.D) corresponding
to the different solutions achieved with both TTD(λ, m), and
our approach. Thus, if we consider the set of the steady vectors
corresponding to the TTD(λ, m) solutions, SET{χRL}, and
the corresponding average value χRL, a mathematical analysis
showed that the entire set SET{χRL} was inside a sphere
centred in χRL, with radius 0.37. In the case of the steady
vectors corresponding to the solutions found through our
approach SET{χOA}, and its average value χOA, we could
see that the entire set was inside a sphere centred in χOA and
radius 0.02. It is important to notice that these radii are in
probability units – the set of all possible solutions is inside a
sphere of radius 1–.

C. Door traversal

We also applied our approach to solve the door traversal
behaviour in the experimental scenario shown in Figure 8. To
learn this task the reinforcement is negative whenever the robot
collides with the door-frame, the robot goes too far from the
door, or the movement direction is so unsuitable that the robot
is not facing the door any more.



6

Fig. 8. Experimental scenario for the door traversal behaviour. The initial
positions of the robot were within the shaded area.

After having carried out 21 experiments, the resulting
average learning time was 86 minutes and 42 seconds – our
approach was used with the same NON optimal combination
of parameters as for the wall following behaviour, β = 0.35,
λ = 0.8, γ = 0.95 and m = 30. Figure 9 shows four
trajectories of the real robot across the door using the robot-
controller learnt in simulation. There are several issues that
should be remarked upon here: First, to solve the door traversal
behaviour we are only using the ultrasound sensor readings
(which proved to be very noisy for this task); the use of a
more precise sensor, such as a laser scanner, would make
the learning of this task easier. Second, the real scenario in
which the robot is moved is not identical to the experimental
scenario where the robot-controller was learnt (Figure 8),
nevertheless the controller was robust enough to deal with
these environment changes. Finally, the robot identifies the
environment through the same set of states as those used in
the wall following behaviour: two-layer Kohonen networks.
Although these networks were trained to recognise the most
frequent situations in a wall following behaviour and they only
consider the ultrasound sensor readings coming from the right
side of the robot, the analysis of the door traversal behaviour
published in [8], proves that this information should be enough
to solve the door-traversal task.

Fig. 9. Trajectories of the real robot across a door. The size of the door is
100 cm in a) and b), 90 cm in c), and 80 cm in d). The small dots represent
the ultrasound readings.

IV. CONCLUSION

Through RL the robot is able to learn on its own – through
trial an error interactions with the environment– using only the
feedback provided by a very simple reinforcement function.
Nevertheless, the large number of random actions taken by
the robot, especially at early stages, makes this paradigm
too slow and forces the use of a robot-simulator to learn
the optimal control policy. In this article we suggest the use
of a new approach based on the combination of a genetic
algorithm, reinforcement learning, and an adjustable number
of states, which makes the learning fast (Section III.A), and
increases its stability (Section III.B). The mutual influence
that the genetic algorithm and the reinforcement exert on each
other varies along the learning process, so that the influence
of the GA is high at the beginning, while the RL plays an
increasing importance role with the passing of time. While
the GA helps the robot to explore sequences of actions with
a rapidly decreasing degree of randomness, the RL prevents
the GA from being trapped in local minimums. Finally, the
properties of the regular Markov chains constitute a powerful
tool for adjusting the number of states so that the attention is
focused only on those states that are relevant in the robot’s
long term behaviour. Finally, it is important to mention here
that our approach shows a low dependency on the value of the
learning parameters (table I), so that a reasonable selection of
their values is enough to get good results.

Our proposal was used to solve two different and common
tasks in mobile robotics: wall following and door traversal.
The experimental results confirm a high performance of our
proposal, not only as the required learning times are signif-
icantly reduced and the stability of the process is improved,
but also as our proposal was able to solve a complex task,
such as door traversal, when the only thing we changed was
the reinforcement function.

ACKNOWLEDGMENT

The authors thank the support from grants TIN2005-03844,
PGIDIT04TIC206011PR, TIC2003-09400-C04-03.

REFERENCES

[1] C. W. Anderson A. G. Barto, R. S. Sutton. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, 13, 1983.

[2] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, 1996.

[3] P. Cichosz and J. J. Mulawka. Fast and efficient reinforcement learning
with truncated temporal differences. In Proceedings of the Twelfth
International Conference on Machine Learning, 1995.

[4] Pawel Cichosz. Reinforcement Learning by Truncating Temporal Dif-
ferences. PhD thesis, Dpt. of Electronics and Information Technology,
Warsaw University of Technology, 1997.

[5] U. Nehmzow. Scientific Methods in Mobile Robotics. Springer, 2005.
[6] J. Correa R. Iglesias, C. V. Regueiro and S. Barro. Improving wall

following behaviour in a mobile robot using reinforcement learning. In
ICSC International Symposium on Engineering of Intelligent Systems,
EIS’98, 1998.

[7] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3, 1988.

[8] T. Kyriacou S. Billings U. Nemhzow, R. Iglesias. Robot learning through
task identification. International Journal on robotics and autonomous
systems, 54:766–778, 2006.

[9] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of
Cambridge, England, 1989.


