
1

A Deterministic Filter for Simultaneous

Localization and Odometry Calibration of

Differential-Drive Mobile Robots
Gianluca Antonelli∗ Stefano Chiaverini∗

∗Dipartimento di Automazione, Elettromagnetismo,

Ingegneria dell’Informazione e Matematica Industriale
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Abstract— Local reconstruction of differential-drive mobile
robots position and orientation is made possible with an accurate
odometry calibration. Starting from the encoders readings, and
assuming an absolute measurement available, a deterministic
filter to localize the vehicle while estimating a proper set of
odometric parameters is proposed. A stability analysis guarantees
that the position and orientation error decreases to zero and
the estimation error of the odometric parameters is bounded.
The proposed technique has been experimentally validated on
a Khepera II mobile robot and compared to an Extended
Kalman Filter approach. With both approaches the errors are
practically the same, the proposed approach, thus, represents a
computationally lighter alternative to Kalman approaches with
a rigorous stability analysis.

Index Terms— Odometry, Calibration, Mobile Robots

I. INTRODUCTION

The position and orientation of a mobile robot can be re-

constructed starting from the odometry, i.e., resorting to the

encoders’ measurements at the wheels properly integrated over

time. This estimation is affected mainly by threes sources of

errors: numerical drift, inherently related to discrete-time in-

tegration; the presence of non-systematic errors, such as those

due to wheel slippage and the presence of systematic errors,

i.e., errors in the estimation of the parameters involved in the

kinematics equation used to convert the readings at the wheels

into data expressing the robot movement. The estimation of the

odometric parameters is known in the literature as odometry

calibration.

Notice that the overall error in reconstructing the vehicle’s

absolute configuration, i.e., its position and orientation, is often

significant after a short path executed by the robot; in fact,

it has been demonstrated by [10], [11] that this error shows

a square dependence with the distance travelled. This is true

even for robot whose odometric parameters were accurately es-

timated. One of the first works that focuses on odometric errors

is [17], where knowledge of the path under execution is used

to improve posture estimation between odometric updates.

The paper by [6] performs identification of the odometric

parameters based on absolute position measurements after the

execution of a set of suitably defined trajectories. Reference [8]

proposes to drive the robot through a known path and then

evaluate the shape of the resulting path to estimate the model

parameters.

In case it is possible, however, it is convenient to resort to

external sensing device that provide an absolute measurement.

In this case, an accurate odometric calibration is useful to

optimize the estimation of the robot’s configuration between

two successive measurements. In [13] a sensor fusion tech-

nique is proposed where, in order to improve accuracy of the

robot configuration estimate, odometry is used together with

direct measurement of absolute angular velocity provided by

an optical-fiber gyroscope. Multisensory measurement is also

exploited in [16], where a laser sensory system is used to

correct on-line the odometry through a maximum-likelihood

based identification technique. The work by [9] proposes the

use of a gyroscope, together with the encoders, and a GPS

unit in a Kalman filter approach in order to estimate the

outdoor robot’s configuration; another multisensory system,

applied to a car-like vehicle, is presented in [5]. Reference [14]

proposes the use of an Extended Kalman Filter (EKF) in

order to simultaneously localize the vehicle and estimate the

vehicle odometry; paper [15] extends this approach in order

to include estimation of non-systematic errors. Reference [7],

finally, validate the use of an EKF for a vehicle aimed at

volcano exploration.

In previous work [4], the Authors presented an off-line cal-

ibration method for a proper set of odometric parameters. The

novelty of the proposed method relies in the observation that,

for unicycle-like mobile robots, a linear relationship between

the measurements and a proper set of odometric parameters

(not the physical parameters) holds and thus it is possible

to use the least-squares estimation to achieve the odometric

calibration. In [2], [3], moreover, by using two successive

least-squares operations, the actual physical parameters are
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Fig. 1. Top-view sketch of a differential-drive mobile robot with relevant
variables.

estimated. In both cases, no linearization is involved in the

estimation. In this paper, a recursive version of [4] is proposed

where both localization and parameters’ estimation is achieved

simultaneously. A Lyapunov-like stability analysis guarantees

convergence to zero of the localization error and boundness of

the parameters estimation error. This problem were solved in

the literature, see, e.g., [14], by resorting to an EKF approach

applied to the non-linear relationship between the physical

odometric parameters and the measurements; for the latter

approach, however, no formal proof of convergence exists.

The proposed technique has been experimentally validated on

a Khepera II mobile robot and compared to the EKF approach.

II. MODELLING

Let us consider a differential-drive mobile robot as sketched

in Figure 1. The motion of the left and right wheels is

characterized by the sole (scalar) axis angular velocities ωL

and ωR, respectively; the rear castor wheel is passive.

Let us consider a ground-fixed inertial reference frame Σi.

By defining as wheelbase the segment of length b connecting

the two lateral wheels along their common axis, it is conve-

nient to choose a vehicle-fixed frame Σv such as: its origin

is at the middle of the wheelbase, its x-axis points toward

the front of the robot body and its y-axis points toward the

left wheel, completing a right-hand frame. With this choice,

the absolute velocity of the robot body can be described

by the 2-dimensional vector v expressing the translational

velocity of the origin of Σv with respect to Σi and by

the scalar ω expressing the angular velocity of Σv as seen

from Σi. A major advantage of the above choice is that,

under the assumption that the wheels do not slide on the

ground, the translational velocity v is always orthogonal to the

wheelbase. Therefore, in the vehicle-fixed frame the vector v

is completely characterized by its sole x-component denoted

as v.

By denoting as x and y the coordinates of the origin of Σv

expressed in the frame Σi, and as θ the heading angle between

the x-axis of Σv and Σi, the robot kinematic equations are

written as






ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω .

(1)

It can be recognized (see Figure 1) that the body-fixed

components v and ω of the robot velocity are related to the

angular velocity of the wheels by






v =
rR

2
ωR +

rL

2
ωL

ω =
rR

b
ωR −

rL

b
ωL .

(2)

in which rR and rL are the radiuses of the right and left wheel,

respectively.

By defining as

p = [x y θ ]
T

(3)

and

αR =
rR

b
(4)

αL = −
rL

b
, (5)

it is possible to rewrite the odometry of the vehicle as

ṗ = Φ(p, ωR, ωL)β (6)

where the vector β ∈ IR4 collects four odometric parameters:

β = [ rL rR αL αR ]
T

(7)

and the regressor Φ ∈ IR3×4 (dependencies are dropped out

to increase readability) is defined as:

Φ =













1

2
cos(θ)ωL

1

2
cos(θ)ωR 0 0

1

2
sin(θ)ωL

1

2
sin(θ)ωR 0 0

0 0 ωL ωR













(8)

III. PROPOSED FILTER

By denoting with p̂ and β̂ the estimated position and

parameter vectors, respectively, and being

p̃ = p − p̂ , (9)

the proposed filter is:
{ ˙̂p = Φβ̂ + Kpp̃

˙̂
β = KβΦTp̃ ,

(10)

where Kp ∈ IR3×3 and Kβ ∈ IR4×4 are positive definite

design gains. From that, the estimation of b̂ can be obtained

by resorting to (4) or (5) yielding:

b̂ =
r̂R

α̂R

or b̂ = −
r̂L

α̂L

. (11)



A. Stability Analysis

Let us consider as Lyapunov function

V (p̃, β̃) =
1

2
p̃Tp̃ +

1

2
β̃

T
K−1

β β̃, (12)

that is clearly positive definite; its time derivative is given by

V̇ (p̃, β̃) = p̃T
(

Φβ − ˙̂p
)

− β̃
T
K−1

β

˙̂
β (13)

where the assumption that the vector of parameters β is

constant were made. By substituting the equations (10), and

after some basic computations, one easily obtains:

V̇ (p̃, β̃) = −p̃TKpp̃ (14)

that is V̇ (p̃, β̃) ≤ 0.

Since the system is non-autonomous the stability can not be

derived by applying the La Salle variant of the Lyapunov’s the-

orem. By further assuming that p is twice differentiable, then

V̈ is bounded and V̇ is uniformly continuous. Moreover, since

V is lower bounded, application of the Barbălat’s Lemma [12]

allows to prove global convergence of p̃ → 0 as t → ∞.

Moreover, due to the filter’s definition, it can be observed that

β̃ is bounded.

Concerning the odometric parameters it should be remarked

that the proposed filter gives information on the vector β̂ and

thus on the two intermediate variables αR and αL and not on

the physical parameter b.

Notice that, at the best of our knowledge, with the Extended

Kalman Filter no formal proof of convergence exists even for

the sole position and orientation variables.

IV. EXPERIMENTAL RESULTS

Experiments were run using the Khepera II mobile robot,

shown in Figure 2, manufactured by K-Team [1].

The vision system used is composed by a rgb-camera that

estimate the vehicle configuration by resorting to a camera-

calibration procedure and image-based feature extraction. The

overall configuration error can be estimated as bounded by

few millimeters and few degrees [3].

The robot is equipped with a Bluetooth communication

module that allows to control the vehicle and read the wheels

position/velocities with a sampling time

T = 60 ms

from a remote, Linux-based, PC. The camera is mounted on

a Windows-based PC where an estimation algorithm runs at a

sampling time of 50 ms and communicates with the Linux-PC

via the UDP/IP protocol. Due to the stochastic nature of the

communications, a small phenomenon of random sampling is

to be expected.

The robot is moved using a simple via-point navigation al-

gorithm. At the initial time the robot is simply put somewhere

in the arena. The trajectory is 100 s long.

Fig. 2. The Khepera II mobile robot.

The proposed filter were compared with the EKF based

on [14]. To emulate a multi-rate working condition, both the

filters use the encoder readings at T and the vision data at a

sample time of

Tv = 10 · T = 600 ms

and use the temporal update in between those samples. In the

proposed filter, the temporal update is achieved by running the

equations (15) with null gains.

Since the vision data is stored at the smaller sample time

of T , for evaluation purposes the errors are computed using

this sample time.

A. Discretized filter

The filter’s equations presented in eq. (10) were imple-

mented in the following discrete-time version:

{

p̂(k+1) = p̂(k) + Φ(k)β̂(k) + Kpp̃(k)

β̂(k+1) = β̂(k) + KβΦ(k)Tp̃(k) ,
(15)

where k denotes the sample time.

B. EKF equations

The experimental comparison were made with respect to the

well known Extended Kalman Filter. The implemented version

is similar to the one presented in [14] with the sole difference

that here the wheels velocities instead of the wheels encoders



are used as input for the equations. Let us define as filter’s

state the vector:

x = [x y θ rL rR b ]
T

(16)

and model the odometry in discrete-time as

x(k+1) = f(x(k), ωR(k), ωL(k),Rv)

z(k) = Hx(k) + Rw , (17)

where f is the nonlinear function that collects the discrete-time

version of (1) plus a random walk model for the odometric

parameters, Rv ∈ IR6×6 represents the process noise, Rw ∈

IR3×3 represents the measurement noise, while the output

matrix H ∈ IR3×6 is constant and defined as

H = [ I3 O3 ] (18)

where I3 is the 3 × 3 Identity matrix and O3 is a null 3 × 3

matrix. The classic EKF equations are used, in details:

L = MHT
(

Rv + HMHT
)

−1

x(k)(+) = x(k)(−) + L
(

z(k) − Hx(k)(−)
)

P = M − MHT
(

Rv + HMHT
)

−1

HM

for the measurement update and

x(k+1)(−) = f(x(k)(+), ωR(k), ωL(k))

M = FPF T + Rw

for the temporal update; the linearized extended system ma-

trix F is given by:

F =















1 0 F1,3 F1,4 F1,5 0
0 1 F2,3 F2,4 F2,5 0
0 0 1 F3,4 F3,5 F3,6

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1















(19)

with

F1,3 = −
1

2
T (x4ωL + x5ωR) sin(x3)

F1,4 =
1

2
TωL cos(x3)

F1,5 =
1

2
TωR cos(x3)

F2,3 =
1

2
T (x4ωL + x5ωR) cos(x3)

F2,4 =
1

2
TωL sin(x3)

F2,5 =
1

2
TωR sin(x3)

F3,4 = −T
ωL

x6

F3,5 = T
ωR

x6

F3,6 = T
x4ωL − x5ωR

x6
.

C. Gain selection and initialization

Selection of the matrix gains is a critical aspect in making

a comparison between two different approaches. In particular,

the proposed filter is linear in the parameters while the EKF

is non-linear. Moreover, selecting as diagonal all the matrix

gains leads to select 7 scalar values for the proposed approach

while 9 scalar values for the EKF corresponding to the

covariance matrices; however, it is known in the literature

that only the ratio, in a wide sense, between those matrices

influences the EKF’s behavior. Finally, the initial value for the

Kalman gain M too needs to be selected. Any effort to chose

the gains so as to ensure similar performance to the filters

were made; nevertheless, this is impossible in a strict sense.

For this reason, the presented results have to be interpreted

mainly looking at the error behavior rather then focusing on

direct numeric comparison. In detail, the gains used for the

experiments are:

Kp = I3

Kβ = 0.05I4

Rv = 100I3

Rw = diag [ 10 10 10 0.005 0.005 10 ]

M = I6

Based on a CAD value, the initial estimation are based on

the nominal values of

r
L,nominal = 0.8 cm

r
R,nominal = 0.8 cm

bnominal = 5.333 cm

and correspond to

β̂(k=0) = [ 0.8 0.8 0.15 0.15 ]
T

x̂(k=0) = [ x̂(0) ŷ(0) θ̂(0) 0.8 0.8 5.333 ]
T

where the initial robot configuration is taken as the first

measured value.

D. Experimental results

Figure 3 shows the path performed by the vehicle, notice

that the data used to evaluate the filters are the same used

in [2], [3] to perform off-line estimation of the physical

odometric parameters, a comment about will follow. The

motion of the vehicle is achieved using a simple via-point

guidance algorithm.

Figures 4 and 5 show the values of the estimated parameters

using the proposed filter, please notice that the variables in

figure 5 are a-dimensional.

Figure 6 shows the value of β1 and β2 estimated with the

proposed together with the corresponding value rR and rL es-

timated with the EKF approach. The filters output numerically

similar values and, due to a proper selection of the gains, also

with a similar dynamics.
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Fig. 3. Path performed by the vehicle.
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Fig. 4. Estimated value of β1 (thick line) and β2 (thin line) during the
motion.

Figure 7 shows the value of b̂ where some numerical

differences can be appreciated. It should be noted, however,

that the proposed filter is based on a 4-parameters set of

unknowns that guarantee a linear relationship with the data and

not on the physical parameters as the EKF. For that reason,

the comparison between the b̂’s is only indicative.

A measure of the validity of the approaches might be given

by the numerical reconstruction errors. Those, however, are

close to the resolution of the measurement system (≈ 0.2 cm)

for both filters for the whole trajectory duration. The only

conclusion that can be made is that both filters have similar,

and good, performance.

0.16

0 500 1000 1500
0.12

0.13

0.14

0.15

[samples]

[-
]

Fig. 5. Estimated value of −β3 (thick line) and β4 (thin line) during the
motion.
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Fig. 6. Estimated value of β1 (rL) during the motion: solid-thick-blue line,
proposed approach; dashed-thick-orange line, EKF.

E. On-line compared with off-line odometry calibration

In [2], [3], the same data are used to make an off-line

estimation of both the physical parameters and the vector β.

It is worth noticing the difference between the algorithms.

The identification procedure in [2], [3] is made off-line,

since a linear relationship arises between unknown and data

the estimation converges to the true value. In the proposed

approach, and in any on-line adaptive algorithm, it is not

guaranteed that the estimation converges to the true value but

only that the error is limited. Concerning the EKF, however,

no formal proof of convergence exists.

V. CONCLUSIONS

In this paper, a deterministic filter to localize the vehicle

while estimating a proper set of odometric parameters is
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Fig. 7. Estimated value of β2 (rR) during the motion: solid-thin-blue line,
proposed approach; dashed-thin-orange line, EKF.
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Fig. 8. Estimated value of b̂ during the motion: solid-blue line, proposed
approach; dashed-orange line, EKF.

proposed. A stability analysis is provided that guarantees

that the position and orientation error decreases to zero and

the estimation error of the odometric parameters is bounded.

The proposed technique has been experimentally validated

on a Khepera II mobile robot and compared to an Extended

Kalman Filter approach. The performance of the algorithms is

practically the same. The proposed approach, thus, represents

a simpler alternative to the Extended Kalman Filter approach

that, in addition, exhibits a rigorous stability analysis.
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